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Advanced MOSFET Modeling 

 

Slide 1 

*** 

The slide illustrates silicon crystal lattice. 

Potential minima for electrons are formed near the atom nuclei. 

One free electron is shown. 

Between the valence and the conduction band there is a band gap. 

 

Slide 2 

*** 

Concept of quantum states 

 Electrons are Fermi-particles – Fermions 

Only one electron can exists in one quantum state 

Quantum states are illustrated with boxes around atoms, or with lines in the energy diagram 

Slide 3 

*** 

In the valence band, nearly all quantum states are filled with electrons 

In the conduction band, very few states are filled 

Slide4 

*** 

Intrinsic semiconductor 

Slide 5 

*** 

Acceptor atom leads to an energy state that is a little bit above the valence band. Acceptor is neutral 

when empty. Slide 5 shows an empty acceptor state. This would be so at very low temperature. 

Slide 6 

*** 

Slide shows the acceptor state filled with electron. One electron jumped from the top of the valence 

band to the acceptor state. The acceptor atom is therefore ionized and negative. 
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Notice that one state in valence band is now empty. This empty state can now “move” though the 

valence band and in this way transports positive charge – “hole”. 

Slide 7 

*** 

Slide 7 shows a donor atom. This atom has a state for an electron that is a little below the conductive 

band. Donor is neutral when filled with an electron.  Slide shows the filled donor state – it would be so at 

a very low temperature. 

   

Slide 8 

*** 

At a little higher temperature the electron can jump from the donor state to the conductive band. The 

donor is now ionized and positive. Electron in conductive band is “free” and can contribute to current. 

 

Slide 9 

*** 

This slide shows three distribution functions. 
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is the Maxwell-Boltzmann distribution. It can be derived for the particles that are distinguishable (like the 

balls with numbers) and unlimited number of them can occupy one quantum state. It holds for classical 

particles. 
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is the Bose-Einstein distribution. It can be derived for the particles that are not distinguishable and 

unlimited number of them can occupy one quantum state. It holds for Bosons (like photon). 
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is the Fermi-Dirac distribution. It can be derived for the particles that are not distinguishable and only 

one can occupy one quantum state. It holds for Fermions, such as the electron. Fermi-Dirac distribution 

has a parameter called Fermi-Energy (Ef). We can think about is as a statistical parameter like 

temperature. Temperature is the measure of the average energy and Ef is the measure of the number of 

particles. At T=0K, all the quantum states with energies E<Ef are filled and all E>Ef are empty.   

Slide 10 

*** 
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This slide illustrates the Maxwell-Boltzmann distribution. The density of particles (or probability that a 

state is full) is given by: 

kT

E

enn


 0  

E is the potential energy. For instance, we can use this formula to calculate the air density versus height. 

In this case, E is the gravitational potential energy E = mgh. 

Slide 11 

*** 

This slide illustrates the Fermi-Dirac (FD-) distribution. This distribution has a very different shape than 

the Maxwell-Boltzmann (MB) distribution only around the Fermi energy. For energies well above the 

Fermi energy (many kT above) the FD distribution can be approximated by MD distribution.   
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For energies much below the Ef (many kT below), the number of empty states follows the formula 

similar to the MB distribution 
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Therefore: If there is an energy gap around the Fermi energy, the number of electrons in the conduction 

band and the number of holes in the valence band can be approximated by Maxwell-Boltzmann 

distributions.  

 

Slide 12 

*** 

The side gives formulas that we will use later. 

C is capacitance, ψ is electrostatic potential, Q is charge, E electric field. 

Red is positive charge, blue is negative charge. 

The capacitance of the capacitor does not depend on the thickness of the electrodes. 

Slide 13 

*** 

The slide shows the n-channel MOSFET structure. Upper part shows the cross section. The figure shows 

source and drain (n-regions), and the gate electrode above. 

The lower part of the slide shows the energy diagram (conduction and valence band) that corresponds to 

the dashed line. Blue regions represent free electrons. Yellow regions represent holes. Red bricks 

illustrate positive depleted donors. Blue bricks illustrate negative depleted acceptors. 
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We have two PN-junctions. The regions, where potential is changing, are depleted. The regions with low 

potential in conduction band contain free electrons (blue). The regions with high potential in the valence 

band contain holes (yellow).   

Slide 14 

*** 

Notice that the charge of the donors and acceptors in the depleted layer is not compensated. This charge 

makes electric field (arrows) and causes electric potential change ψ. The field direction is from the 

positive to the negative charge (arrow). The electric potential ψ decreases in the direction where electric 

field is pointing. The energy diagram shows the potential energy for electrons that is equal to  

Ep = -e ψ 

Therefore the potential energy has the opposite sign from the electric potential.  

Slide 15 

*** 

As explained in slide 11, the densities of electrons and holes can be calculated using MB distribution 

functions because the FD distribution, that holds exactly, can be approximated in this way. 

Let us calculate the density of electrons in the p-region below the gate. The electrons are minority 

carriers there. 

We start from the n-regions – source and drain. The electron density in source / drain is equal to Nd – 

the density of donors. If the potential increase from n to p region is E = e Vbi, the density of electrons in 

the p-region is: 

kT

E

dp eNn


  (1) 

In analogous way, we can calculate the density of holes in the source and drain: 

kT

E

an eNp


 (2) 

Notice that for every position holds: 

𝑛 × 𝑝 = 𝑐𝑜𝑛𝑠𝑡 = 𝑁𝑎 × 𝑁𝑑 ×  𝑒−
𝐸

𝑘𝑇   

Slide 16 

*** 

In order to derive the value for 𝑛 × 𝑝, let us imagine that there is an intrinsic (non-doped) silicon part 

attached to the drain. In this part the electron- and hole densities are equal and they are equal to 

parameter ni. 

Since 𝑛 × 𝑝 is constant everywhere and 𝑛 = 𝑛𝑖 and 𝑝 = 𝑛𝑖 in the intrinsic part, it holds:  
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𝑛 × 𝑝 = 𝑛𝑖
2  (3) 

Ni is equal to 

3101045.1  cmni
 

Notice that typical doping is six orders of magnitude smaller than the atom density, and the intrinsic charge 

density is six orders of magnitude smaller than the typical doping in silicon.  

Using equation (3), we can calculate the minority carrier densities in an alternative way (compare with (1) 

and (2)): 
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Slides 17 - 19 

*** 

The slides illustrate how the band diagram and the densities of electrons and holes change, when we apply 

positive voltage at the gate electrode. 

 

Slide20 

*** 

The slide shows 2D potential diagram of the valence band. The z axis is energy and the y-axis the depth of 

the MOS structure. 

Slide21 

*** 

The slide shows 2D potential diagram of the conduction band.  

Slide 22 

*** 

Let us now calculate the amount of charge in the channel when we apply a gate-bulk voltage Vgb.  

The region of the MOSFET within the dotted square will be examined in the following slides. 

We distinguish the voltage in gate oxide Vox, and the potential change in the depleted region ψs. 

It holds: Vgb = Vox + ψs. 

An important initial conditions for the calculations are the hole- and electron densities are 



Design Analoger Schaltkreise Ivan Peric 

6 
 

aip

ap

Nnn

Np

/
2




 (4) 

These are the densities at the bottom edge of the depleted region. 

 

Slide 23 

*** 

Slide 23 shows magnified the region within the square from the slide 22. 

We would like to calculate the channel charge as function of the gate-bulk voltage 

?)(' GBch VQ  

It holds 

oxsGB VV  (5) 

The positive charge at the gate Qg, is equal to the negative charge in the channel Qch and the negative 

charge due to the acceptors in the depleted region Qdep. 

depchG QQQ '''  (6) 

Only in this way, the structure is electroneutral. 

The voltage drop in the oxide can be calculated using the formula for the plate capacitor 

ox

depch

ox

G

ox
C

QQ

C

Q
V

'

''

'

' 
 (7) 

ox

oSiO
ox

t
C


2'  (8) 

We used equation (6) to derive (7). 

If we calculate the Qch and Qdep as functions of ψs, using eq (7) and (5) we can derive Vgb as function of 

ψs. Using (6) we can then find Qch (Vgb). Therefore our first tasks are to calculate 

?)(' schQ   

and 

?)(' sdepQ   

Slide 24 

*** 

Let us a bit simplify the MOSFET structure by setting the oxide thickness to 0. In this case Vox = 0, and Vgb 

= ψs. Except of this nothing else changes.  
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Slide 25 

*** 

Let us calculate the acceptor charge in the depleted layer as function of voltage ψs. 

?)(' sdepQ   

We will first define the dynamic capacitance of the depleted layer/unit area C’. This capacitance is defined 

as 

dQ/dψ 

dQ is the change of the gate charge (and the depleted region charge) and dψ is the corresponding change 

of potential ψs. 

The middle figure shows the existing charge Q, the additional charges (at the gate and in the depleted 

region) dQ, as well as ψs and dψ. The right figure illustrates that dψ is actually caused by dQ. The additional 

charges are separated by the original charge Q. If the size of the depleted region is t, the dynamic 

capacitance dQ/dψ is given by the formula for a plate capacitor: 

t
C

d

dQ r 0'
' 


 (9) 

Let us now multiply the denominator and numerator of last equation with eNa (e – elementary charge, Na 

is the acceptor density). 

Since the charge in the depleted region is given by  

teNQ a'  (10) 

It holds 

'

0

'

Q

eN

d

dQ ar


 (11) 

Equation (11) is a differential equation that allows calculation of Q(ψs). 

Let us first start from (11) and separate the variables 

 deNdQQ ar 0

''   

By integration of both sides we obtain: 

sar eNQ  0

2'

2

1
  

Or 

sar eNQ  0

' 2 (12) 

Equations (10) and (12) lead to  
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a

sr

eN
t

 02
  (13) 

Finally (9) and (12) lead to 

s

ar eN
C





2

0'  (14) 

Slide 26 

*** 

Let us now calculate the charge in the channel as function of ψs. 

Notice, that the channel is built of free electrons. The free electrons follow the MB-distribution – there are 

more and more electrons when we approach the gate oxide because the electron potential energy 

decreases in this direction. As consequence, the channel will occupy only a thin region near the gate oxide. 

(Notice that, for simplicity, we assumed that oxide thickness is zero.) 

The channel charge will be calculated in the next slide. In this slide, we derive the change of the potential 

ψ in the thin region dy near the gate oxide. 

The potential d ψ is caused by the charge Q. It holds 

dψ = Q/C(dy) 

C(dy) is here the capacitance of the small piece of silicon with thickness dy. 

It holds: 

'
00

'

'

)( C

dyeN

t

dyeN

dy

teN

dyC

Q
d a

r

a

r

a 



(15) 

where we used result (9). 

C’ is the capacitance of the depleted region (14). 

Slide 27 

*** 

Let us now calculate the charge in the channel as function of ψs. 

At first, it holds: 

TU

y

pp eenn

)(

0



 (16) 

np is the density of the electrons in the depleted layer. Np0 is the electron density at the bottom edge of 

the depleted layer where it holds: 

0

2
/ paip

ap

nNnn

Np




(17) 
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UT is the thermal voltage (kT/e), UT ~ 25mV at room temperature. 

Let us now linearize the potential ψ close to the upper edge of the deplete region (the region where 

channel is formed). 

y
dy

d
y s


 )( (18) 

From equation (15) we obtain 

'C

eN

dy

d a
 (19) 

By substituting (19) into (18), and (18) into (16), we get: 

T

a

T

s

UC

yeN

U

pp eeenn
'

0







(20) 

The total channel charge is obtained by integration of equation (20) 






t

UC

yeN

U

pch dyeeenQ T

a

T

s

0

0

'
'



 

The result is: 

T

s

U

p

a

T
ch een

eN

UC
Q



0

'
'  (21) 

 

C’ is the capacitance of depleted region (14). 

Slide 28 

*** 

Now we have all equations and formulas and we can calculate numerically Qch(Vgb). 

Let us summarize. 

Equation 21 gives the channel charge as function of depletion layer potential ψs. 

T

s

U

a

i
Tsch e

N

n
UCQ




2

2

'' )( (22) 

Equation 12 gives the depletion layer chare charge as function of depletion layer potential ψs. 

sardep eNQ  0

' 2 (23) 

It holds from (5,6,7): 
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ox

sdepsch

soxsGB
C

QQ
VV

'

'' )()( 



 (24) 

The functions Qch(Vgb) and ψs (Vgb) are shown. Notice that Qch is quite small until ψs reaches the value  

2ψ0. After this, ψs saturates and Qch increases linearly. 

The constant ψ0 is defined (calculated) as: 

V
n

N
U

i

a

T 42.0ln0  (25) 

Using MB-distribution (16), it can be derived that when ψs = 2ψ0, the electron density at the upper edge 

of the depletion region is equal to Na. Therefore the electron density is equal to the hole-density in the 

undepleted p-silicon. We are talking about inversion.  

Slide 29 

*** 

In following slides we will approximate the equation (24) for the regions of strong- and weak inversion.  

The region of strong inversion is highlighted with grey. In this region, the potential ψs is nearly constant 

and equal to  

i

a
Ts

n

N
U ln22 0     

Some books use the value TU62 0  as onset of strong inversion.  

The equation (24) can be then simplified as follows 

 

ox

depch

GB
C

QQ
V

'

0

''

0

)2(
2





 (26) 

Let us now define the parameter threshold voltage as the Vgb voltage where the strong inversion starts 

(ψs reaches the value 2 ψ0). It holds: 

ox

dep

GBTH
C

Q
VV

'

0

'

00

)2(
2)2(


  (27)  

By substituting (27) into (26) we obtain: 

 THGBoxch VVCQ  ''  (28) 

This is the channel charge equation in strong inversion. 

 

Slide 30 
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*** 

The region of weak inversion is highlighted with grey. In this region, the potential ψs changes nearly 

linearly as function of Vgb, and the channel charge is much smaller than the depletion region charge. 

 

Equation (24) can be then simplified as follows: 

ox

sdep

ssGB
C

Q
V

'

' )(
)(


   (29) 

We would like to express ψs as function of Vgb. In order to do this, we first linearize the equation (29) in 

the vicinity of 2 ψ0. 

)2()2( 0

2

0

0

s

s

GB
GBGB

d

dV
VV 






  

If we take (29) into account, it holds: 

00 2

'

'

2

1
1


 s

dep

oxs

GB

d

dQ

Cd

dV
  

Further: 

s

dep

d

dQ
C


'  

Therefore: 

)2(
)2(

1)2( 0'

0

'

0 s
ox

GBGB
C

C
VV 


 








  

If we use the definition of the threshold voltage (27), we can rewrite the last equation as: 

n

VV THGB
s


 02  (30) 

The slope factor n is defined as: 

n
C

C

ox


'

0

' )2(
1


 (31) 

Equation (21) gives us the channel charge as function of ψs: 

T

s

U

a

i
Tsch e

N

n
UCQ




2

2

'' )( (32) 
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If we substitute equation (30) in (32), we obtain the approximate equation for the channel charge in weak 

inversion: 

T

THGB

nU

VV

Toxch eUCnQ



 '' )1(  (33) 

Notice that we replaced C(ψs) with C(2 ψ0). 

 

Slide 31 

*** 

Now we have all important equations: 

Channel charge versus gate-bulk voltage in weak inversion (33), channel charge versus gate-bulk voltage 

in strong inversion (28), the definition of the threshold voltage (27), the definition of the ψ0 (25), definition 

of the slope factor (31), the depleted layer capacitance (14) and the depleted layer charge (12). 

We have derived these formulas under assumption that the density of minority carriers (electrons) at the 

lower edge of the depleted region is  

aip Nnn /
2

  

Notice that the term ni2/Na is a part of the equation for ψ0 (25). 

20 lnln
i

a
iT

i

a
T

n

N
nU

n

N
U   

Also the threshold voltage depends indirectly on ψ0 since Vth depends on ψ0. 

If the density of minority carries changes, the formulas for Vth and ψ0 would need to be adjusted. 

This is the case when we have the drain at a nonzero potential versus the bulk – when we have the drain 

bias. 

Slides 32 and 33 

*** 

The slides illustrate what happens in the case of the drain bias Vdb. The drain-bulk junction is now reversely 

polarized and the potential change in the depleted region near drain is increased by Vdb. The size of the 

depleted region is increased as well.  

It can be derived that the electron density at the bottom edge of the depleted region, close to drain, is: 

T

DB

U

V

a

i
p e

N

n
n





2

 (34) 

This can be derived starting from MB-distribution for electrons (1) applied to the “paths” A and B, which 

are nearly in thermodynamic equilibrium and from the fact that the density of electrons in the drain and 
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the source is Nd. The density in the point PB must be by factor T

DB

U

V

e


smaller than the density in point PA. 

Since the density in PA is 
a

i
p

N

n
n

2

  in PB must be T

DB

U

V

a

i
p e

N

n
n





2

. 

The question mark in slide 32 illustrates that the semiconductor is not in the thermodynamic equilibrium 

along the entire depletion region boundary. The MB-distribution does not hold everywhere. 

 

Slide 34 

*** 

This slide introduces the corrections for the formulas close to the drain, due to the drain bias. 

Following the result (34), the formula for ψ0 should be corrected as: 

DBV 00 22   (35) 

Let us replace this in the formula for threshold voltage (27). We obtain: 

DB

sox

dep

DB
ox

dep

ox

DBdep

DBTH V
dC

dQ
V

C

Q

C

VQ
VV

02

'

'

'

0

'

0'

0

'

0

)2(
2

)2(
2








 


  

DBTHDB
ox

dep

DBTH nVVV
C

C
VV  )

)2(
1(

'

0
 (36) 

By substituting (35) and (36) into (28) and (33) we obtain 

 DBTHGBoxch nVVVCQ  ''  (37) 

for strong inversion and 

T

DB

T

THGB

U

V

nU

VV

Toxch eeUCnQ




 '' )1(  (38) 

for weak inversion. 

Slide 35 

*** 

In the case of source-bias, similar correction by Vsb can be performed for the channel charge equation 

close to the source. 

Slide 36 

*** 

If we want to calculate the channel charge in any point of the channel between the source and drain, we 

can start from the equations (37) and (38). There are two approaches. 
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1. Bulk is the reference 

Within the first approach, the bulk voltage is the reference. We use the formulas (37) and (38), and replace 

Vdb with Vx. Vx changes from Vsb (channel close to source) to Vdb (channel close to drain). The threshold 

is defined as in (27). 

The equations are: 

 

 xTHGBoxch nVVVCQ  0

''  (39) 

 

T

x

T

THGB

U

V

nU

VV

Toxch eeUCnQ






0

'' )1(  (40) 

 

),( DBSBx VVV   

The threshold is defined as 

 

ox

ar

TH
C

eN
V

'

00

00

22
2


   (41) 

2. Source is the reference 

Another possibility is to take the source as the reference. Near the source, we do following transformations: 

(compare with 36) 

ox

SBdep

SBTH
C

VQ
VV

'

0

'

0

)2(
2





  (42) 

We redefine the threshold as: 

   

ox

SBar

ox

SBdep

TH
C

VeN

C

VQ
V

'

00

0'

0

'

0

22
2

2
2











  (43) 

Therefore 

SBTHTH VVV   (44) 

By substituting the transformation (44) into (28) we obtain 

 THGSoxch VVCQ  ''  (45) 

By substituting the transformation (44) into (33) we obtain 

T

THGS

nU

VV

Toxch eUCnQ



 '' )1(  (46) 
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The slope factor is defined as: 

 

n
C

VC

ox

SB 



'

0

' )2(
1


 (47) 

In an arbitrary point in the channel we have: 

 

 xTHGSoxch nVVVCQ  ''  (48) 

 

T

x

T

THGS

U

V

nU

VV

Toxch eeUCnQ




 '' )1(  (49) 

 

),0( DSx VV   

 

Slides 37 – 44 

*** 

These slides just summarize the results we have obtained so far. 

Slide 45 

*** 

Let us now derive the source-drain current equation for strong inversion. We will assume source as 

reference and use the channel-charge equation (48). We assume that in strong inversion, the drift current 

dominates. The drift current equation is: 

)()( ' xconst
dx

dV
QWxI x

ch   (50) 

Factor  is mobility, W is gate width, dVx/dx is the electric field. Notice that although Q and electric field 

are position dependent, the current is constant through the channel.  

Equation (50) can be integrated 

dx
dx

dV
QWdxI x

ch  '  

 
DSV

xch

L

dVQWIdx
0

'

0

  
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
DSV

xchdVQWIL
0

'  

Finally, we obtain the current in the form of the integral: 


DSV

xchdVQ
L

W
I

0

'  (51) 

The next step would be to substitute (48) into (51) and perform integration. 

Slide 46 

*** 

Let us derive the source-drain current equation, now, for weak inversion. We will assume source as 

reference and use the channel-charge equation (49). We assume that in weak inversion, the diffusion 

current dominates. The diffusion current equation is: 

)()(
'

xconst
dx

dQ
WDxI

ch
  

D is the diffusion constant. 

Also here, we can perform the integration 

  dx
dx

dQ
WDdxxI

ch
'

)(  

 
DSV

x

x

ch
L

dV
dV

dQ
WDIdx

0

'

0

 

If we now substitute the channel charge equation (49) into last equation we obtain: 


DSV

xchdVQ
L

W
I

0

'  (52) 

It is very interesting that this equation has the same form as the equation for the current in strong 

inversion (51). This means than the same formula (51 and 52) can be used independently of the working 

mode of the transistor. The only difference for strong- and weak inversion is the equation for Qch. 

Slide 47 

*** 

This slide shows the current equations for weak- and for strong inversion, obtained after integration of 

formula (51). 

The current in weak inversion is 
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















TU

DSV

T

GST

eeUn
L

W
CI

nU

V

Tox 1)1(
2'  (53) 

 

The current in strong inversion is (source is reference) 

 
















2

2

' DS
DSGSTox

V
nVV

L

W
CI   (54) 

If bulk is used as reference, the current is (here (39) is used instead of (48)) 

 

    22'

DBGBTSBGBTox nVVnVV
L

W
CI    (55) 

 

with 

0; TGBGBTTGSGST VVVVVV   (56) 

 

Slide 48 

*** 

This slide shows the current saturation in the case of weak inversion. The saturation occurs when Vds 

reaches several thermal voltages n x UT. 

 

Slide 49 

*** 

This slide shows the current saturation in the case of strong inversion. Formulas for source as reference 

are used. The saturation occurs when Vds reaches the value (called Vdssat) 

n

VV
V THGS

DSSAT


  (57) 

The saturation current is 

 

n

V

L

W
CI GST

oxsat
2

2

'  (58) 
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Slide 50 

*** 

This slide shows the current saturation in the case of strong inversion. Formulas for bulk as reference are 

used. 

The drain current equation is (55) 

    22'

DBGBTSBGBTox nVVnVV
L

W
CI    

Notice that the equation has two separated terms, one with Vsb and one with Vdb. This gives us the idea 

to represent the transistor as a parallel connection of two devices that produce currents: 

 2'

SBGBTox nVV
L

W
CI    and  2'

DBGBTox nVV
L

W
CI    respectively. This is one of the ideas in 

the EKV transistor model developed at EPFL. 

Slide 51 

*** 

The Berkeley transistor model (BSIM) takes into account one additional effect – the mobility saturation.  

The current equations is the same as (50) 

)()( ' xconst
dx

dV
QWxI x

ch    (59) 

However, the mobility is given by the equation: 

satx EE /1

0





  (60) for electric field lower than some saturation value Esat. 

For higher field values, the current does not depend anymore on the field and is given by the equation: 

satchsatch EWQvWQxI
2

)( 0'' 
  (61) 

This formula can be derived from (59) and (60) by replacing Ex with Esat. 

The integration of (59) with (60) leads to: 

 

dx
dx

dV
QWdx

dx

dV

E
I x

ch
x

sat

 









 '

0

1
1   
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and finally: 



























2

1

2'

0 DS
GST

sat

DS

ox V
nV

LE

V
L

WC
I


 (62) 

This equation is similar as (54) but it has the correction factor:
sat

DS

LE

V
1 . 

Slide 52 

*** 

Let us now calculate the saturation current. 

Within BSIM model, the current saturation is explained with velocity saturation. The current saturates 

when at the drain side, the electric field in the channel achieves the value Esat. Then the current is given 

by the equation 

)(' LWQvI chsatsat   (63) 

The charge in the channel is given by (48): 

 xGSToxch nVVCQ  '' , with TGSGST VVV   (64) 

Let us first derive the drain-source voltage, for which the saturation occurs Vdssat. 

From (63) and (64) we can write 

 DSSATGSToxsatsat nVVWCEI  '0

2


 (65) 

It holds also (62) at the onset of saturation. Therefore: 

 DSSATGSToxsat
DSSAT

GST

sat

DSSAT

ox
nVVWCE

V
nV

LE

V
L

WC



























'0

2'

0

22
1


 (66) 

 

Slide 53 

*** 

By solving equation (66), Vdssat can be obtained: 













sat

GST

GST
DSSAT

nLE

V
n

V
V

1

 (67) 
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Compare this with equation (57). The BSIM model introduces the correction: 











sat

GST

nLE

V
1 . 

By substituting (67) into (62) we obtain the saturation current: 

 

n

V

nLE

V
L

WC
I GST

sat

GST

ox

sat
2

1

2'

0














 (68) 

 

Compare this with (58). Typical values for the transistor parameters are shown in the slide. Notice that for 

small L and large Vgst, the factor 








sat

GST

nLE

V
 may be larger than 1. In this case, the current increases only 

linearly with Vgst. 

 

Slide 54 

*** 

This can influence the trans-conductance as well, as shown in this slide. 

The trans-conductance reaches the maximal value oxsatWCv '  and does not grow anymore when Vgst is 

increased. In weak inversion, the trans-conductance is linearly proportional to the current. 

Slide 55 

*** 

It is interesting that the current vs. Vds function (62)  



























2

1

2'

0 DS
GST

sat

DS

ox V
nV

LE

V
L

WC
I


 

has a nonzero slope for Vds = Vdssat. The slope is 

DSSATsat

sat

VLE

I


 (69) 

 

The current beyond Vdssat can be approximated by the linear equation 
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)( DSSATDS

VDS

sat VV
V

I
II

DSSAT





  (70) or 








 


A

DSSATDS
sat

V

VV
II 1  (71) with the parameter Va (Early voltage) 

DSSATsatA VLEV  . 


