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Lecture 4 

Themes: 

General formulas for every working condition 

Weak inversion 

Capacitances 

Small signal model 

General formulas for every working condition (optionally) 

The following formula that holds in triode region can be derived 
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The derivation is in a separated document in the file „MOSFET Detailed“. (This document is 

optional, it is not the subject of the course.) 

The formula (1) takes the body effect into account, this is why it contains factors n = 1 + 

Cdep,min/Cox (slope factor) and the corrected threshold voltage Vthsb = Vth + (n-1)Vsb. 

The formula is not very elegant because it is asymmetrical with respect to source and drain. The 

transistor is, on the other hand, symmetrical. It would be better if the formula reflects this 

symmetry. This can be fixed in the following way. 
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It can be shown that formulas 2 and 2b follow from (1) when the terms in brackets are multiplied. 

The formula 2b gives us the idea to represent a transistor as a parallel circuit of two ideal 

transistors. These ideal transistors conduct current only from drain to source and are always in 

saturation. Such a representation is useful to solve certain circuits. 
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Figure 1: General transistor model 

Weak inversion 

During previous analysis of MOSFET, we assumed that the channel charge and the Ids current 

equal zero for Vgs < Vth. We derived for instance: 

Idssat = 
1

2n
μCox

W

L
(Vgs − Vthsb)

2
  

The formulas are based on a simplistic model of channel charge. They are not correct enough 

for analysis of certain circuits.  

We will now consider the case when Vgs somewhat smaller than Vthsb. 

We call this operation region the weak inversion (subthreshold region). In contrast to this, for 

Vgs > Vthsb we have a strong inversion. 

We considered in lecture 2 the case of Vgs = 0.35 V. Let us start with this. 
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Figure 2: Potentials in the case of weak inversion 

Let us repeat some results from solid state physics. Source and drain contain free electrons, 

because they are n-doped, and also because they have a higher electrostatic potential.  

Consequently, the substrate contains holes because it is at a lower electrostatic potential. The 

holes get collected at the places with lower potential and electrons get collected at the places 

with higher potential. A positive electrostatic potential is a potential barrier for positive charges. 

A negative electric potential is a barrier for electrons.  

Let us take a look at Figure 2. The deeper substrate regions are at -1 V. The surface of the 

substrate below gate oxide has a potential only slightly lower than source and drain. The 

potential barrier for electrons coming from source into the substrate is small (0.1 V) and 

electrons can pass from source to drain if they get an energy > 0.1 eV from thermal oscillations 

of crystal lattice (from “phonons”).  

 

When is a potential barrier small? A small barrier is comparable with the mean thermal energy 

of electrons. Remember that the thermal energy at room temperature (300 K) corresponds to a 

voltage of UT = 26 mV. UT = kT/e. The thermal energy is the average kinetic energy of an 

electron at a certain temperature. 
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Let us estimate the current between drain and source caused by the thermal energy and density 

gradient of electrons (diffusion current).  

The first assumption is that we have a diffusion current. We need to derive the charge carrier 

density/area1 in the substrate region between the source and drain. If we know the density we 

can derive the current using the equation for diffusion current.  

We will calculate the density of charge carriers (in the case of NMOS transistor electrons) in 

several steps. The first step is the derivation of the electric potential underneath gate oxide as a 

function of vertical z-coordinate. The second step is the calculation of the charge carrier density 

as a function of the potential. The third step is the integration of the density function in z-

direction. We will not do all steps exactly. For exact derivation, I refer to „MOSFET Detailed“.   

 

Figure 3: Weak inversion, potential and electron density within p-substrate 

For instance we will not derive the exact potential vs z-coordinate dependence (see Figure 3) 

than just write the formula for the potential at the substrate surface (Vx) as function of Vgs: 
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Also in this lecture we calculate just a small difference of Vx with respect to the Vx value for 

Vgs = Vthsb. (Vdep ~ Vcont + Vsb.) It is then justified to assume:  

Cdep = Cdep,min. 

Cdep,min is the dynamic capacitance for Vdep = Vcont. 
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The height of the potential barrier UB is equal to the difference of the source potential Vs and 

the potential of the substrate surface Vx. For Vgs = Vthsb, it holds Vx = 0. For smaller Vgs the 

following formula is valid:  
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As mentioned, a negative voltage is a (positive) potential barrier for electrons. For this reason 

we write the minus sign before Vx in (3). 

 

Figure 4: The density of the charge carriers in the substrate below the gate oxide for Vgs < Vth 

and for Vds = 0. 

Let us now calculate the density of the electrons in the substrate below SiO2. The electron 

density in source is n0 = Nd. Nd is the density of donor atoms.   

The electron density in equilibrium state is given by the Maxwell Boltzmann distribution.  

The question of equilibrium is always “difficult” when currents flow, but at least we can assume 

that the source-channel and drain-channel junctions are in equilibrium and that electron 

densities in source and drain are Nd.  

For this reason, the electron density at the substrate surface (in the “channel region”) is given 

by:  

TB/UU

deNn


 (4) 

The derivation of the density per unit area is not easy. We should perform the integration in z-

direction. For this we would need the function n(z). As mentioned „MOSFET Detailed“ shows 

the exact derivation.   

The result quite intuitive.  
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Q’ is the charge density per area, C’dep is the dynamic capacitance / area of the depleted region. 

(Precisely C’dep = C’dep,min, the capacitance for Vdep = Vcont.)  

The charge density is for Vds = 0 uniformly distributed in x-direction. Therefore the Ids current 

is zero. 

A current will flow only if there is a density gradient. A gradient will be formed when there is 

a voltage between drain and source. 

Let us now consider the case Vds  0. 

How large is the potential barrier between drain and substrate? 

The threshold at the drain end of the channel region is by (n-1) Vds larger than Vthsb because of 

the body effect.  

The potential barrier between the drain and the substrate surface is: 
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UB,S is the potential barrier between drain and substrate. 

If we substitute (6) into (5) we obtain the following result: The charge density in the channel 

region is close to drain by exp (-Vds/UT) smaller than close to source. This result can be also 

derived when we apply Maxwell-Boltzmann formula in the drain-substrate junction region. The 

electron density in the drain is Nd and in substrate close to drain Nd exp (-UB,D/UT).  

Notice the following: Maxwell-Boltzmann Formula does not “work“ in the channel region. The 

potential is there independent of x coordinate (Figure 5), but the electron density changes from 

Q’s to Q’d. The reason for this is that this region is not in the equilibrium state when a current 

flows. The Fermi energy (a parameter of the Fermi-Dirac distribution) is not constant in the 

channel region. For this region, we cannot approximate Fermi-Dirac distribution with Maxwell-

Boltzmann formula.   

Summary (Figure 5): 

The charge density close to source is 

Tthsbgs )/nUV(V
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The charge density close to drain is 
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Q =  ∫n(z)dz = ∫n0e
−V(z)/UTdz = ⋯? ? ?… = Cdep

′  UTe
−UB/UT (5) 
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Figure 5: The density of the charge carriers in the substrate below the gate oxide for Vgs < Vth 

and for Vds > 0. 

As equations 7 and 8 show, there is a density gradient. It yields to the following diffusion current: 

dx

dQ
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D is the diffusion constant, for which the Einstein-equation holds: 
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Figure 6: Diffusion current for Vgs < Vth 

The characteristics Ids = f (Vds) (11) shows saturation behaviours for Vds > a few UT (Figure 7): 
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Figure 7: Saturation of the diffusion current für Vds > UT. 

When we substitute Vds > a few UT in (11), we get: 
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By substituting (14) and (15) into (13) we obtain the equation for saturation current for weak 

inversion: 
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W
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We can conclude 

1) A transistor is never fully off. Assume Vgs = Vthsb.  From equations for strong inversion we 

would expect Idssat = 0. If we use equation (16) we obtain Idssat ~ W/L  100 nA. 

2) The condition for saturation is in weak inversion Vds > a few UT. Notice that Vdssat does not 

depend of Vgs, as it does in strong inversion. 

Strong inversion: Vds > (Vgs - Vthsb)/n.  

This is an interesting result that influences some circuits (e.g. current mirrors). 

 

Figure 8: Simulated current as function of Vgs 

A current of 100 nA may sound small but for many applications it is significant. Let us assume 

a DRAM cell with a capacitance of 10 fF. In the case of a 100nA current, the DRAM cells gets 

discharged in about 100 ns.  

Weak inversion is one of the reasons for DC current consumption of CMOS logic gates. 

We can divide the Vgs voltage range in weak inversion (Vgs < Vthsb + a few UT) and in strong 

inversion Vgs > Vthsb + a few UT, as shown in Figure 8. 

For strong inversion following equation is valid: 
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For weak inversion we derived (16): 
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A further consequence of weak inversion is that we cannot increase the transconductance by 

increasing W/L ratio beyond some value if the bias current is kept constant. 

Let us calculate the transconductance as dIdsat/dvgs: 

From the formula for strong inversion (17) we get: 

/nµC'k;(W/L)2kIg oxdssatm   (18) 

From the formula for weak inversion (16) we get: 

Tdssatm /nUIg   (19) 

Equation (18) would imply, that we can increase gm as much as we wish when the transistor is 

made shorter and wider. However this is not true. If we have a constant bias current Ids, increase 

of W/L lead to a decrease of Vgs - Vthsb. This yields from (17). This puts a transistor into weak 

inversion where the transconductance does not depend of W/L. The increase of gm is stopped.  

The value Idssat/n  UT is the maximum transconductance that we can get from an MOS transistor 

for a given Idssat bias current.  
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Figure 9: Transconductances of a transistor working in strong inversion (left) and weak 

inversion (right) respectively. 
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Let us now summarize the transistor equations that we derived so far: 

Strong inversion 

Simple model with body effect 
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n is the slope factor, n = 1 + Cdep,min / Cox ~ 1.25. 

If we do not want to take body effect into account we can set n = 1. 

Model that assumes velocity saturation 
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Early-effect 
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Threshold voltage 

Vth =
2Cdep,min
′

Cox
′   Vcont =

√2eNaε0εSiVcont

Cox
′   

Vcont = 2UTln (
Na

ni
)  

The following values hold in a 65 nm technology 

Esat for PMOS ~ 10.4 V/µm and Esat for NMOS ~ 9.7 V/µm  

µ(NMOS) = 2.64  10-2
 m

2/Vs and µ(PMOS) = 1.45  10-2
 m

2/Vs 

C’ox = 13.28 fF/µm2 or 0.01328f/m2 
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Capacitances in MOS structure 

The depletion regions and electrodes in the MOS structure contain charge, as shown in Figure 

10. The amount of charge depends on voltages between electrodes. This is reason why 

capacitances are formed. The relationships between the charge in depleted regions and the 

voltages are non-linear. So-called dynamic capacitances are defined as dQ(V)/dV in the 

working point. These dynamic capacitances are used for the small signal model of transistor. 

 

Figure 10: Regions with space charge within a MOSFET 

Gate capacitance 

The most important capacitance in transistor is its gate capacitance. We have already seen that 

there are two capacitances below the gate. The oxide capacitance Cox = C’ox  W  L and the 

capacitance of the depletion zone Cdep = C’dep  W  L. C’ox and C’dep are the capacitances per 

unit area. Depending on operation region, weak- or strong inversion, the gate capacitance 

differs. 
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Figure 11: Gate capacitance 

Cgate in weak inversion 

The gate capacitance in weak inversion (Figure 12) is the series circuit of Cox and Cdep 

Cgate = Cgb = WL
CoxCdep

Cox + Cdep
 

The gate capacitance connects gate and substrate. 

 

Figure 12: Gate capacitance in weak inversion 

 

Cgate in strong inversion and Vds = 0 
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The voltage between the contacts of the Cdep is, in strong inversion, fixed since the source and 

the drain are “shorted” by the channel. That's why we don't see Cdep when we change the voltage 

at the gate. The charge amount in the depletion zone does not change. Of the original two 

capacitances only Cox remains. The gate capacitance is then: 

Cgate = Cgsd = WLC ox 

The gate capacitance is therefore larger than in weak inversion.  

 

Figure 13: Gate capacitance in strong inversion for Vds = 0. 

Cgate in strong inversion and saturation (Vds > Vdssat) 

It can be shown that the charge ampunt in the channel is approximately 2/3 from that for Vds = 

0. Therefore, the gate capacitance is approximately:  

Cgate =
2

3
WLC ox 

If we have Vds > Vdssat (saturation), the channel is detached from drain. As consequence of this, 

the gate capacitance only applies between gate and source. 

Cgate = Cgs =
2

3
WLC ox 

There is no capacitance between drain and gate, as Figure 14 shows. 
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Figure 14: Gate capacitance in strong inversion for Vds > Vdssat. 

In addition to gate capacitances, we have the following smaller capacitances: 

PN junction capacitances (junction capacitances) Cjd, Cjs. 

Overlapping capacitances Cgs,ovl and Cgd,ovl. These capacitances are created because the source 

and drain areas extend partially under the gate oxide gate. 

The drain gate capacitor Cgd,ovl is especially important because it intruduces feedback between 

transistor drain and gate. Drain is usually the output and gate the input of an amplifier.   

 

Figure 15: Additonal capacitances 

Small signal model of an MOSFET 

Figure 16 shows the full small signal model of an MOSFET. 
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Figure 16: Small signal model of a MOSFET 
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