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Lecture 14 

The topics of this lecture are: 

• Noise Theory and Thermal Noise in Resistor 

• Noise in the MOS transistor 

• Noise in the voltage amplifier and the charge sensitive amplifier 

• 1/f noise and transistor mismatch 

 

Noise Theory Summary (see also DAS_2023_Noise_Theory) 

This chapter is a summary of the old lecture: DAS_2023_Noise_Theory.  

Electronic noise is our perception of fluctuations in current flow or voltage.  

In order to calculate the amplitude of the noise signal, it is necessary to know and 

mathematically describe the source of the noise (the input variable) and the transfer function of 

the measurement device (the circuit attached to the noise source). 

If the circuit remains unchanged in time, the transfer function can be represented as a frequency-

dependent complex function H(s) (quotient of Fourier or Laplace-transformed signals). 

H(s) = Vout(s)/Vin(s) 

The circuit can also be represented using a pulse response. The representation with the help of 

pulse response is suitable if the circuit changes over time – e.g. it is switched on at a certain 

moment. 

Thermal Noise in a Resistor 

The electrons move in a resistor not only because of the field (drift) but also because they have 

kinetic (thermal) energy. This additional movement causes the fluctuations in the current - the 

noise. Let us try to calculate the noise. 
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We divide (quantize) time into short time intervals t. In each time interval, a certain number 

of electrons leave the resistor. The mean charge <Q> is equal to the current multiplied by t. 

Because of the noise, the actual charge fluctuates around the mean value. We refer to these 

fluctuations as q. 

 

 

 

The (noise) charges q in short time intervals t can be understood as charge pulses. We assume 

that the resistor is connected to a circuit. This circuit has a pulse response and a transfer function. 

We want to calculate the noise signal at the output uout. Signal uout is generated by the noise 

signals q produced by the resistor. 
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Each input pulse generates an output signal. Each output signal is the product of the pulse 

response and the noise charge q(): 

𝑢𝑜𝑢𝑡,(𝑡) =  𝑞()𝑃(𝑡, )   

P(t, ) is the pulse response at a moment t to an input pulse with integral 1 (Dirac pulse) that 

was generated at the moment . 

The total amplitude of the output noise signal at a moment t is the sum of all output signals that 

were generated in the past: 

𝑢𝑜𝑢𝑡(𝑡) = ∑ 𝑞()𝑃(𝑡, )<𝑡   

We don't know the actual values of noise charges q() and can only calculate their variance. For 

this reason, it is only possible to calculate the variance of the noise signal at the output. This 

variance corresponds to the noise power. 
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The following formula can be derived for the noise in the time domain: 

⟨𝑢(𝑡)2⟩ = ∫
⟨𝑞2⟩

𝛥𝑡
(𝑃(𝑡, 𝜏))2

𝑡

−∞
𝑑𝜏  

Δt is the length of the time intervals. 

P(t, τ) is the pulse response at moment t to an input pulse that was generated at the moment τ. 

The formula for noise in time domain is suitable for systems that change over time, e.g. the 

circuits that contain switches. 

If our system does not change in time, we can also derive the corresponding formula in 

frequency domain:  

⟨𝑢2⟩ = ∫ 𝑆(𝑓)|𝐻(𝑖𝜔)|2
∞

0
𝑑𝑓  

S is the spectral power density of the noise source. 

For white noise, it holds: 

𝑆(𝑓) = 2
⟨𝑞2⟩

𝛥𝑡
  

When S is independent of Δt and has no frequency dependence, we have white noise. In this 

case, the noise signal at the input can be modelled with arbitrarily short signals – Dirac pulses. 

Δt. We call the noise white because the Fourier transform from the input pulses (Dirac pulses) 

is a constant function. The noise at the input contains all frequencies, such as the white color, 

contains all wavelengths.  

If the noise pulses at the input have a slower shape and S has a frequency dependence, the noise 

is not white. In this case, the following applies: 

𝑆(𝑓) = 2
⟨𝑞2⟩

𝛥𝑡
|𝑃𝑖𝑛(𝑖𝜔)|

2   

t

q

𝑢𝑜𝑢𝑡(𝑡) = 𝑞()𝑃(𝑡, )

<𝑡
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An example is the 1/f noise. 

How large is the spectral power density for the thermal noise of a resistor? To answer this 

question, we need to calculate the variance of noise signals q. Here's how we do it. 

We can split the resistance into two parallel resistors. They have uniformly decreasing charge 

densities. The total resistance of the parallel connection is R. A diffusion current flows in each 

partial resistor. The total diffusion current is zero because both subcurrents have the same 

magnitude and different directions. 

 

 

The mean number of electrons that leaves each resistor-part in time is: Idiff∆t/e. We can assume 

that the actual number of electrons fluctuates around this mean.  

L
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The standard distribution for discrete fluctuations is Poisson distribution. The variance of this 

distribution is equal to the mean. For this reason, the variance of the charge q that leaves each 

resistor-part in ∆t is:  

< q2 >= eIdiff∆t  

The total variance is two times greater, because we have two resistor-parts. 

If we consider the formula for diffusion current, the formula for resistance as a function of 

mobility, and the Einstein equation: 

D

µ
=
kT

e
  

we get: 

 

SIR(f) = 4kT/R  

 

Thermal noise is the result of diffusion currents (thermal movements) and discrete nature of the 

charge. (Poisson Statistics). 
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Poisson distribution is important for noise theory. Poisson distribution is the standard 

distribution for discrete random variables, just as the Gaussian distribution is the standard 

distribution for continuous random variables. Poisson distribution has the property that the 

variance (square of the standard deviation) is equal to the expected value (mean). 

The noise of a resistor can be described with a current source with spectral power density SIR = 

4kT/R. The unit of SIR is A2s. 

 

We can convert the current source with a parallel resistor into a voltage source with a series 

resistor. For the voltage and current of the respective sources, hold: 

U = I  R 

The power density of the voltage source is SVR = R2 SIR. 

We obtain: 

SVR(f) = 4kTR  

The noise of a resistor can therefore also be described with a voltage source with a spectral 

power density of SVR = 4kTR. The unit of SVR is V2s. 
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Noise in MOS transistor 

The channel of the MOSFET can be seen of as a resistor with an uneven charge carrier density. 

Thermal noise of the channel can be modelled with a current source. The power spectral density 

can be calculated using the equation for the resistor: 

SIT =
4kT

〈R〉
  ( 1 ) 

1 / <R> is the average conductance of the channel: 

1

〈R〉
= 
eμW〈Q′〉

L
  ( 2 ) 

<Q'> is the average charge/area (unit C/m2). It can be calculated as follows: 

〈Q′〉 =  
1

L
∫ Q′(x)dx
L

0
  ( 3 ) 

 

Figure 1: Thermal noise in the MOSFET channel 

 

Substituting (3) into (2) and (1), we get the formula for the power spectral density: 

SIT = 4kTμ
W

L
〈Q′〉 =

4kTWμ

L2
∫ Q′(x)dx
L

0
  ( 4 ) 

Let us assume that the transistor is in saturation. 

It holds near source: 

Q′(0) = Cox
′ (Vgs − Vth)  

Near the drain, the charge is: 

Q′(L) = 0  

Exact calculation of the integral leads to: 

〈Q〉 =  
2

3
Cox
′ (Vgs − Vth)  ( 5 ) 

(The exact derivation of equation (5) is in the next paragraph.) 

Substituting (5) into (4), we get 

SIT = 4kTμ
W

L

2

3
Cox
′ (Vgs − Vth)  ( 6 ) 

The transconductance of the transistor is given by the following formula: 

Gate

Source Drain

Channel (Q)

IT

R
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gm = 
dIdssat

dVgs
= 
d

dVgs
(
1

2n
μCox
′ W

L
(Vgs − Vth)

2
) =
1

n
μCox
′ W

L
(Vgs − Vth)  ( 7 ) 

Substituting the formula for gm (7) into that for SIT (6), we obtain the final equation for the 

power spectral density of the current noise source in a MOSFET: 

 SIT = 4kTn
2

3
gm    ( 8 ) 

 

 

Figure 2: Thermal noise in the MOSFET channel 

 

Derivation of the formula for transistor current Ids and the average channel charge 

(optional) 

In lecture 2 we had the following formula for the channel charge per area: 

Q′ = Cox
′ (Vgs − Vth)   ( 9 ) 

The formula is valid in strong inversion for small Vds. 

The formula must be adjusted for larger Vds. The channel charge per area varies from the value 

given by (9) on the source side to zero on the drain side, where the channel pinches off (Figure 

2). 

Let us denote the potential in the channel region (at the boundary between silicon and gate 

oxide) as Vx(x). Coordinate x goes from source to drain (Figure 2). Let us define Vx with respect 

to the source potential Vs. That means: 

Vx(0) = 0  

and 

Vx(L) = Vds  

Gate

Source Drain

)V(VC(0)Q' thgsox −= 0(L)Q' =

x

0(0)Vx = dssatx V(L)V =

R
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The channel charge per area at any point x is: 

Q′(x) =  Cox(Vgs − Vth − nVx)   ( 10 ) 

Or simplified 

Q′(x) =  Cox(Vgst − nVx); Vgst  Vgs − Vth     ( 11 ) 

This paragraph is a repeat from Lecture 3. 

First, let us derive the equation for Ids current for any Vds. 

We start with the formula for drift current: 

Ids = μ W Q
′(x) |Ex| =  μ Cox

′  W (Vgst − nVx) |Ex|   ( 12 ) 

Ex is the E-field component in the x-direction, W is the gate width, µ is the mobility of the 

charge carriers. 

The following applies: 

|Ex| =
dVx

dx
   ( 13 ) 

Substituting (13) into (12), we get: 

Ids =  μ Cox
′  W (Vgst − nVx)

dVx

dx
  

or 

Idsdx =  μ Cox
′  W (Vgst − nVx)dvx    ( 14 ) 

We can integrate the two sides: 

∫ Idsdx
L

0
= ∫ μ Cox

′  W (Vgst − nVx)dvx
Vds
0

  

It follows: 

Ids =
1

2n
μ Cox
′ W

L
 [Vgst

2 − (Vgst − nVds)
2
]  

After squaring the second term, we get the general formula for transistor current:  

Ids = μ Cox
′ W

L
 [VgstVds − n

Vds
2

2
]   ( 15 ) 

In saturation: 

𝑉𝑑𝑠 = Vdssat =
Vgst

n
    ( 16 ) 

Substituting this into (15), we get the formula for saturation current: 

Idssat =
1

2n
μ Cox
′ W

L
 Vgst
2    ( 17 ) 

Now let us calculate the average channel charge in a transistor in saturation: 

〈Q′〉 =  
1

L
∫ Q′(x)dx
L

0
  

Let us start with the integral: 

∫ Q′(x)dx
L

0
= ∫ Cox

′ (Vgst − nVx)dx
L

0
  

The integral is the total charge in the channel divided by W. 
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Since we do not know the function Vx(x), we change the integration variable from x to Vx 

(substitution): 

Q

W
= ∫ Cox

′ (Vgst − nVx)dx
L

0
= ∫ Cox

′ (Vgst − nVx)
dVx

dVx/dx
= ∫ Cox

′ (Vgst − nVx)
dVx

|Ex|

Vdssat
0

L

0
  

The E field can be calculated using (12): 

 Ids = μ Cox
′  W (Vgst − nVx) |Ex|; ⇒ |Ex| =

Ids

μCox
′  W (Vgst−nVx)

      ( 18 ) 

It follows: 

Q

W
= ∫ Cox

′ (Vgst − nVx)
dVx

|Ex|

Vds
0

=
μ(Cox
′  )
2
W

Ids
∫ (Vgst − nVx)

2
dVx

Vdssat
0

  

=
μ(Cox
′  )
2
W

nIds
[
(Vgst−nVdssat)

3

3
−
(Vgst)

3

3
] =
μ(Cox
′  )
2
W

nIds

(Vgst)
3

3
   ( 19 ) 

In saturation, Ids = Idssat. Substituting (17) into (19), we get: 

Q

W
=
μ(Cox
′  )
2
W

nIds

(Vgst)
3

3
=
2

3
LCox
′ Vgst   ( 20 ) 

Therefore it is: 

〈Q′〉 =  
1

L
∫ Q′(x)dx
L

0
=
2

3
Cox
′ Vgst  ( 21 ) 
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Example voltage amplifier 

Let us consider the voltage amplifier as in lecture 6. We consider the variant with the MOSFET 

amplifier and resistor Rf. We use resistor Rf for DC feedback. 

In Lecture 6 we derived the transfer function 

Vo(s) =  −Vs(s)
Ci

Cf


1

(sTr+1)

sTf

(sTf+1)
  ( 22 ) 

The time constants are: 

Tr =
sC′o

βgm
 =
s(CiCo+CiCf+CfCo)

Cfgm
    ( 23 ) 

with 

Co
′ = Co +

Ci
+Cf

Ci
++Cf
,  β =

Cf

Ci
++Cf
,

β×gmR0

1+β×gmR0
, Ci
+ = Ci + Cg  

And 

Tf = RfCf   ( 24 ) 

If we have a voltage step with amplitude 1 at the input, the output voltage magnitude increases 

within 3  Tr to about Ci/Cf and decreases again to 0 (Figure 3 above). (Gain is negative.) 

 

Figure 3: Voltage amplifier with noise sources. The figure above shows the step response. 

 

The most important noise sources are the transistor Ti (noise source IT) and the resistor Rf (noise 

source IR). The components connected to the input of the amplifier generate large noise at the 

output, because the noise is amplified. Resistor Ro contributes little to the noise since it is 

connected directly to the amplifier output, and its noise is not amplified. Figure 3 shows the 

circuit with the noise sources IT and IR (white) and the input signal source Vs (yellow), which 

is switched off in further analysis. We will perform the frequency dependent noise analysis. 

  

Cf

Rf

Ro

CoVs

Ci

Vo

Ti

IT

IR

1
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Step 1 

We can move the transistor noise source to the input of the amplifier (Figure 4). 

The following idea helps us: noise of the transistor can be modelled either with the current 

source IT between the drain and the source or with the voltage source VT at the gate. Since an 

additional voltage at the gate - vg - produces a drain-source current gm  vg, and since the power 

densities are proportional to the square of the voltage or current, the following holds: 

SVT =
SIT

gm
2 =

4
2

3
kTn

gm
  ( 25 ) 

 

Figure 4: The noise source IT can be moved to transistor input 

 

Let us note the following: 

If we move the noise sources to the input of a two-port circuit, and if that circuit has a finite 

input impedance, we must use a voltage source in series and a current source in parallel with 

the input. 

 

Figure 5: Moving of the noise source - Cg inside two-port 

However, we will define the gate and source, as the input of the transistor for noise analysis, 

after the Cgs. The two-port then has an infinite input impedance and the parallel current noise 

source has zero amplitude. A voltage source is sufficient for modelling the noise. 

Cf

Rf

Ro

CoVs

Ci

Vo

Ti

IT

IR

VT
Cg

Cg Cgin,out

vn,in

in,in

g

s
gmvgs gmvgs
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Figure 6: Moving of noise source - Cg in front of the two-port 

 

Step 2: Moving of the Source IR 

The current source IR is connected between the input and the output of the amplifier (Figure 3). 

The current that the noise source directs into the output produces little noise. The noise current 

that flows into the input is amplified by the amplifier and generates a large noise at the amplifier 

output. It is therefore equal for the noise calculation whether the source is connected between 

the input and the output of the amplifier or between the input of the amplifier and ground. We 

Cgin,out

vn,in

in,in

g

s
gmvgs gmvgsCg

Zin= Zin=

Cg

vn,in

gmvgs

Zin=
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will connect the source IR between the amplifier-input and the ground as this makes it easier to 

calculate the transfer function. 

 

Figure 7: Moving of the noise source IR 

 

 

Step 3 

To calculate the variance (power) of the noise signal at the amplifier-output, we will use the 

formula for noise in the frequency domain. If there are multiple sources of noise, the 

Cf

Rf

Ro

CoVs

Vo

Ti

IR

C+
i
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contributions can be counted separately. The total noise power is the sum of individual 

contributions: 

< vo
2 > =  ∫ (SIR(f)|HIR(iω)|

2 + SVT(f)|HVT(iω)|
2)df

∞

0
  ( 26 ) 

We now need to derive the transfer functions H(iω) for two noise sources. 

Step 4 

Transfer function for the IR source. 

We will perform a simplified analysis and assume that we have virtual ground at point vi (Figure 

8). 

H(iω) =  
dVo

dIR
= −Zf = −

Rf

1+sRfCf
  ( 27 ) 

Contribution of the source IR to the total noise is: 

〈voIR〉
2 = ∫ SIR |

Rf

1+iωTf
|
2

df
ꝏ

0
= SIR

Rf
2

2Tf
∫ |

Rf

1+iωTf
|
2

d(ωTf) = SIR
Rf
2

2Tf
tan−1(ωTf)]0

ꝏ  
ꝏ

0
=

SIR
Rf
2

2Tf



2
= SIR

1

4

Rf

Cf
    ( 28 ) 

 

Figure 8: Noise source IR 

 

By substituting the power spectral density formula, we get: 

< voIR >
2 =
1

4
SIR
Rf

Cf
=
1

4

Rf

Cf

4kT

Rf
=
kT

Cf
  ( 29 ) 

Figure 9 shows the Bode diagram of the transfer function |H|2. The yellow area contributes 

significantly to the integral in (28). 

Cf

Rf

Ro

CoVs

Vo

Ti

IR

C+
i

Vi
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Figure 9: Bode plot of the HIR transfer function 

 

The formula for the noise power caused by the source IR can be rewritten as follows: 

< voIR >
2 =
1

4

1

Cf
2 SIRTf ( 30 ) 

We use the result Tf = Rf Cf. 

This formula is easy to remember: the noise power depends on the power spectral density S 

multiplied by the time constant Tf. 

 

Step 5 

For the voltage source VT we can derive the transfer function as follows: We assume that vg is 

virtual ground (Figure 10). It follows: 

Vo = −
Zi+Zf

Zi
VT = −

Rf
1+iωRfCf

+
1

iωCi
1

iωCi

VT =
1+iωRf(Cf+Ci

+)

1+iωRfCf
VT  

Ci
+ = Ci + Cgs  

The transfer function is: 

H(iω) =
Vo

VT
=
1+iωRf(Cf+Ci

+)

1+iωRfCf
=
1+iωRf(Cf+Ci

+)

1+iωTf
  ( 31 ) 

)|H20log(| 2 fT

)log(
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Figure 10: Noise source VT 

 

Note that this transfer function (31) predicts constant gain for high frequencies (Figure 11). If 

we substituted this function in formula (26), we would obtain infinite noise power. Something 

is wrong. 

 

Figure 11: Bode plot of the HIR transfer function, case without Tr 

 

For high frequencies, the virtual ground assumption no longer applies. We did a more detailed 

analysis of the circuit in Lecture 6 and we derived two time constants in the transfer function: 

Tr =
sC′o

βgm
   ( 32 ) 

Tf = RfCf ( 33 ) 

The circuit in Lecture 6 is the same as the circuit in Figure 10 except for the position of the 

input source. The position of the input source does not change the time constants in the 

denominator of the transfer function (the poles). 

We can extend formula (31) by adding the second time constant: 

H(iω) =
Vo

VT
=

(1+iωTZ)

(1+iωTr)(1+iωTf)
 ( 34 ) 

with: 

Tr =
sC′o

βgm
   

Cf

Rf

Ro

CoVs

Vo

Ti

VT
C+

i

Vg

fT

zT

)|H20log(| 2

)log(
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Tf = RfCf  

Tz = Rf(Cf + Ci
+)  

The following applies to the time constants: 

Tz > Tf > Tr 

 

Figure 12: Bode plot of transfer function HIR, case with Tr 

 

The frequency range between 1/Tf and 1/Tr (yellow area in Figure 12) has the largest 

contribution to the integral. In this frequency region we can simplify the transfer function (34) 

as follows: 

H(iω)~
Tz

Tf(1+iωTr)
=
Cf+Ci

+

Cf

1

1+iωTr
  ( 35 ) 

It is then relatively easy to calculate the noise power: 

< voT >
2= ∫ SVT (

Cf+Ci
+

Cf
)
2

|
1

1+iωTr
|
2∞

0
df = SVT (

Cf+Ci
+

Cf
)
2
1

2πTr

π

2
= SVT (

Cf+Ci
+

Cf
)
2
1

4Tr
  

)log(

fT

zT

rT
)|H20log(| 2
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< voT >
2 =
4kTn2/3

gm
(
Cf+Ci

+

Cf
)
2
1

4Tr
=
kTn2/3

gm
(
Cf+Ci

+

Cf
)
2
1

Tr
 ( 36 ) 

The formula for the noise power due to source VT can be rewritten as: 

< voT >
2 =
1

4
(
Cf+Ci

+

Cf
)
2
SVT

Tr
 ( 37 ) 

 

Summary 

The variance of the noise signal at the output of the voltage amplifier is given by the following 

formulas: 

< vo >
2 = < voR >

2 + < voT >
2 =
1

4

1

Cf
2 ((Ci

+ + Cf)
2 SVT

Tr
 +  SIRTf) ( 38 ) 

SIR =
4kT

Rf
 ( 39 ) 

SVT =
4kTn2/3

gm
  ( 40 ) 

Let us now calculate the Signal to Noise Ratio (SNR). 

A voltage step at the input with amplitude Visig causes an output signal with amplitude: (Figure 

13) 
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Vosig
2  = Visig

2  (
Ci

Cf
)
2

~ Visig
2  (

Ci

Cf
)
2

  ( 41 ) 

Signal to noise ratio is: 

<vo>
2

Vosig
2 =

1

SNR2
=
1

Vosig
2  
1

4

1

Cf
2 ((Ci

+ + Cf)
2  
SVT

Tr
+ SIRTf)  ( 42 ) 

or 

<vo>
2

Vosig
2 =

1

SNR2
= 
1

Visig
2

1

4

1

Ci
2 ((Ci

+ + Cf)
2  
SVT

Tr
+ SIRTf)  ( 43 ) 

An “equivalent noise signal” (equivalent noise voltage - ENV) can be defined as a signal at the 

input that leads to SNR = 1. 

ENV2 = 
1

4

1

Ci
2 ((Ci

+ + Cf)
2  
SVT

Tr
+ SIRTf)  

This ENV is equal to “input referred noise”. 

 

Figure 13: Step response 

 

Discussion 

We would like to optimize the amplifier's parameters to achieve maximum SNR. 

What sizes can we vary? We want the gain A = Ci/Cf to remain constant during optimization. 

We can increase Ci and Cf by the same factor. Ci and Cf magnification helps to reduce Rf noise 

contribution (30): 

ENVR
2  =

1

4
SIR
Tf

Ci
2 =

1

4A2
Rf

Cf

4kT

Rf
=
kT

A2Cf
  ( 44 ) 

Transistor noise contribution remains unchanged (37): 

ENVT
2 =
kT2/3

gm
(
Cf+Ci

+

Ci
)
2
1

Tr
 ( 45 ) 

We can enlarge Co. Larger Co makes the amplifier slower and helps to reduce the contribution 

of the transistor noise. This follows from the formula for the time constant: 

Tr =
sC′o

βgm
 ( 46 ) 

 𝑜(𝑡)

 𝑠(𝑡)

 𝑖
  

1
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We can increase the transconductance gm by multiplying the transistor and Ro. Larger gm (for 

constant Co) makes the transistor faster and leaves the noise unchanged. (See the formula 37 

and the formula for the time constant Tr (45). 
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Optimizing the amplifier to achieve required SNR, gain and bandwidth (summary) 

Let us start with the "minimum size" Cf (e.g. 10 fF) and with a small transistor and small 

transistor current (e.g. 10 µA). 

First, we scale up Cf and Ci until the Rf - noise contribution becomes small enough. 

We increase Co until the transistor noise contribution becomes small enough. 

After this, we check whether the amplifier has the required bandwidth i.e. is fast enough. 

If the amplifier is too slow, we increase gm by multiplying the transistor and the Ro. 

 

Figure 14: Optimization method 

 

This method can result in too large Ci
+ = Cg + Ci and too large power consumption. 

The following applies to most analogue circuits (see e.g. formula 37): 

SNR2 ~ 1/Tr 

SNR2 ~ 1/gm = 1/ power consumption 

Sometimes, the following figure of merit is defined as a measure of how well a circuit has been 

optimized: 

FOM = power consumption Tr /SNR2 

This figure of merit should be similar for all well optimized circuits. 

Circuit with smaller FOM is better. The figure of merit allows us to compare different circuits. 

  

A B C

Less RF noise less VT noise Correct bandwidth
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Charge sensitive amplifier 

Charge sensitive amplifier is an important circuit. The input signal is a current pulse with charge 

Q, the output signal is proportional to Q and independent of the shape of the pulse. 

A charge sensitive amplifier (Figure 15) has the same form as a voltage amplifier. 

Let us derive the transfer function of the charge sensitive amplifier. 

We start with the transfer function of the voltage amplifier. 

The transfer function of the voltage amplifier is: 

Vo(s) =  −Vs(s)
Ci

Cf


1

(sTr+1)

sTf

(sTf+1)
    ( 47 ) 

The input voltage source (Figure 3) can be converted to an equivalent current source (Figure 

15). The following applies to the current of the current source and the voltage of the voltage 

source: 

is(s)

sCi
= vs(s)  (45b)  

In the time domain, the current i(t) is the integral of the voltage v(t) divided by Ci. 

If we substitute (45b) into (22), we get the transfer function of the charge amplifier: 

Vo(s) =  −
is(s)

sCf


sTf

(sTr+1)(sTf+1)
= −

Q

Cf


1

(sTr+1)

sTf

(sTf+1)
    ( 45c ) 

From this it follows: A current pulse with the charge Q generates an output signal with the 

amplitude: 

Vosig~
Qisig

Cf
  ( 48 ) 

(Figure 15) The output voltage increases to the maximum amplitude (Q/Cf) within 3  Tr and 

goes back down to 0. (The gain is negative.) 
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Figure 15: Charge sensitive amplifier. Top - pulse response 

 

There are three main sources of noise in the circuit (Figure 16): the input transistor (source VT), 

the resistor Rf (source IR). 

 

Figure 16: Charge sensitive amplifier. Sources of noise 
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The third source we have in the case that a sensor, having a leakage current, is connected to the 

amplifier as a signal source (noise source ID). 

Since the circuit has the same form as the voltage amplifier, the same formulas also apply. 

Therefore, the variance of the noise signal at the output is: 

< vo >
2 =
1

4

1

Cf
2  ((Ci

+ + Cf)
2 SVT

Tr
+ SIRTf + SIDTf)  ( 49 ) 

The power spectral densities are 

SVT =
4kTn2/3

gm
  

(thermal noise) 

SIR =
4kT

Rf
  

(thermal noise) 

SID = 2eIleak  

(leakage current noise) 

Signal to noise ratio (SNR) is: 

<vo>
2

Vosig
2 =

1

SNR2
=
1

Vosig
2  
1

4

1

Cf
2 ((Ci

+ + Cf)
2  
SVT

Tr
+ SIRTf)  ( 50 ) 

with 

Vosig =
Qisig

Cf
  

Therefore: 

<vo>
2

Vosig
2 =

1

SNR2
=
1

Qisig
2  
1

4
((Ci
+ + Cf)

2  
SVT

Tr
+ SIRTf)  ( 51 ) 

Equivalent noise signal (charge), defined as the charge signal at the input that leads to SNR = 

1: 

ENC2 =
1

4
((Ci
+ + Cf)

2 SVT

Tr
+ SIRTf + SIDTf)  ( 52 ) 

An input signal = ENC produces at the output a signal with the amplitude equal to the standard 

deviation of the noise signal. It is roughly the smallest measurable signal if the measurement is 

repeated just once. 

Optimization of the charge amplifier 

Let us optimize the parameters of the charge amplifier to achieve maximum SNR. 

It is advantageous to minimize the input capacitance (the sensor capacitance). This reduces the 

noise contribution of the transistor. 

We can also choose a small CF to reduce the RF noise contribution: 

ENCR
2  =
1

4
SIRRfCf 
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We can also enlarge Co. Larger Co makes the amplifier slower (Tr increases) and helps with 

transistor noise:  

Tr =
sC′o
βgm

 

We can increase the transconductance gm by multiplying the transistor and Ro. Larger gm (at 

constant Co) makes the transistor faster and leaves the noise unchanged.  

 

 

 

A B C
smaller RF noise

Correct bandwidth

smaller VT noise

smaller VT noise
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Figure 17: Noise and time constants 

 

Figure 17 illustrates the optimization of the charge-sensitive amplifier for maximum SNR. 

It is important to minimize Ci. 

Short time constant Tf minimizes the sensor leakage current noise contribution. 

Slow time constant Tr is good to reduce the transistor noise contribution. 

It can be shown that SNR is maximal when both time constants are similar in size. 

  

is(t) Q

vo(t)

vo(t)

Large noise contribution from the leakage current

Large of noise contribution from the input transistor

vo(t) Optimum

Low noise contribution from leakage current

Low noise contribution from the input transistor
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1/f noise and transistor mismatch 

We will consider two effects that at first glance appear to be quite different. 

If we make measurements on a group of transistors with identical layouts, we would find that 

the drain currents are slightly different even if all other parameters such as voltages and 

temperature are the same. The currents are not equal, we have a “mismatch”. The mismatch is 

time-independent, it is a permanent mismatch. The mismatch is described by its variance. The 

actual current value is a random variable, described by its mean value and variance. 

1/f noise (or flicker noise) is the variation in transistor current over time. 

Both effects 1/f noise and mismatch can be described as fluctuations of the charge in the 

transistor channel. 

These fluctuations are caused by so-called trap states in the gate oxide near the silicon. 

Let us consider such a trap. The trap can be described by two properties. 

First, we have a probability cpt per time interval t that a charge carrier will be caught in the 

trap. Cr stands for capture rate. Second, we have the emission time 𝜏. In average, the charge 

carrier spends the time 𝜏 in the trap. 

Now let us consider a larger number of traps Nt. The mean number of trapped charge carriers 

in time ∆t is: 

 〈N〉 = Ntcrt  

These charge carriers are released with a time constant 𝜏. After time t, the number of trapped 

charge carries is: 

N(t) = Ne−
t

τ  

We obtain the total number of captured charge carriers as the integral: 

< Ntrapped >= ∫ Ntcr e
−
t−u
τ du

t

−

= Ntcrτ 

Transistor current in strong inversion depends on the total charge in the channel. The MOS 

structure is electro-neutral, therefore the sum of charges below the gate electrode is equal to the 

charge in the gate electrode. Trapping of electrons reduces the amount of charge in the channel. 

The transistor current decreases because the conductivity of the channel decreases. As the 

electrons get released, the current recovers. Since this process - catching and releasing electrons 

- is repeated over and over again, current noise is generated. 

 

Figure 18: Charge carriers are trapped - current drops 

 

t
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Figure 19: Charge carriers are released – current increases 

 

Figure 20: Trapping and releasing electrons creates noise 

 

 

Figure 21: Mismatch. The number of trapped charge carriers varies from transistor to 

transistor 

 

If we repeat measurements of the current through a transistor at different times, the respective 

current value depends on the number of currently trapped charge carriers. We assume that the 

measurements are far away in time and are thus independent. 

t  

t

Transistor 1

Transistor 2

Transistor 3
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To explain mismatch, we could assume that the charge carriers stay in the traps permanently. 

If we then repeat the current measurement on a transistor, we always get the same value. If we 

measure a group of several transistors, the current depends on the number of trapped charge 

carriers in the measured transistor. This number varies from transistor to transistor. Since in 

both cases the current fluctuation depends on the number of trapped charge carriers, with the 

only difference being that the noise is a fluctuation in time and the mismatch is a fluctuation 

within a group of transistors, we expect the same formula for the variance of the current. 
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Variance of the current 

Let us calculate the variance of the transistor current. 

The transistor current (strong inversion, saturation) is given by the following formula: 

Idssat =
1

2n
μ Cox
′ W

L
 Vgst
2    ( 53 ) 

Let us calculate the current as a function of the total charge in the channel. The charge is given 

by the following equation: 

Q =
2

3
LWCox

′ Vgst  ( 54 ) 

Substituting this equation into (50), we obtain: 

Idssat =
3

4n

μ

L2
 VgstQ = kQ  ( 55 ) 

with 

k =
3

4n

μ

L2
 Vgst  

The change of channel charge dQ leads to the following change in current: 

dIdssat = kdQ  ( 56 ) 

The variance of this change is: 

 〈dIdssat
2 〉 = 𝑘2〈dQ2〉  ( 57 ) 

The change in channel charge is caused by trapping of charge carriers. 

dQ = eNtrapped  

If we assume Poisson distribution, then if holds: 

〈dQ2〉 = e2 〈Ntrapped
2 〉 = e2〈Ntrapped〉 =  e

2crτ Nt = e
2crτ nt LW  ( 58 ) 

nt is the number of traps per unit area. 

Substituting this into (55), we get: 

〈dIdssat
2 〉1/ = (

3

4n

μ

L2
 Vgst)

2

e2LW crτ〈nt〉 =

µe2crτ〈nt〉
1

L2𝑛Cox
′ (
3

4
)
2

2 (
1

2n
μ Cox
′ W

L
 Vgst
2 )~

µe2crτ〈nt〉Idssat

L2𝑛Cox
′    ( 59 ) 

The relative change in current gets smaller when L is increased. 

A similar equation also applies for current-mismatch: 

〈dIdssat
2 〉mismatch~

µe2cp〈nt〉Idssat

L2nCox
′    ( 59 ) 

Instead of the product of the capture rate and time (cr 𝜏), we have used the capture probability 

cp in eq. 59. 
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Discussion 

In order to minimize 1/f noise and mismatch, the gate length should be increased. In order to 

keep Vdssat unchanged, the gate width (W) must be scaled up as well. 

We can model the 1/f noise or mismatch with a current source at the transistor drain. We can 

also move the noise/offset source to the transistor gate. The following applies: 

〈dVgs
2 〉 =

〈dIds
2 〉

gm
2 ~

µe2〈nt〉Idssat

L2nCox
′ gm
2         

Let us note that 

gm =
1

n
μCox
′ W

L
(Vgs − Vth) = √2

W

L
μCox′ Idssat  

It follows: 

〈dVgs
2 〉 ~ 

µe2〈nt〉Idssat

L2nCox
′ gm
2 f
~
e2〈nt〉

2LWnCox
′2  

  

Transistors with a large gate area have good matching and small 1/f noise. 

From the book of Razavi (Design of Analog CMOS Integrated Circuits): 

It is therefore not surprising to see devices having areas of several hundred square microns in 

low-noise applications. 

PMOS devices exhibit less 1/ f noise than NMOS transistors because the former carry the holes 

in a “buried channel,” i.e., at some distance from the oxide-silicon interface, and hence trap and 

release the carriers to a lesser extent. 

 

A high-pass filter or capacitive coupling makes a circuit less sensitive to 1/f noise or transistor 

mismatch. Using a high-pass filter is similar to a double measurement, where first a base-line 

measurement is performed, then a signal measurement is made, and then the difference is 

calculated. Such differential measurements are less affected by fluctuations caused by 1/f noise 

or transistor mismatch. 
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Power spectral density 

The formula (58) corresponds to the integral of the power spectral density: 

 〈dIdssat
2 〉1/f = ∫ S(f )

∞

0
df   

How large is S(f)? We need to know S(f) to calculate noise when a transistor is used in a circuit. 

The following equation holds: (DAS_2023_Rauschen_Theorie) 

S(f) = 2
<Q2>

∆t
| Pin(iω)|

2  (60) 

Let us first calculate the power spectral density for the traps with the time constant 𝜏 to 𝜏+𝜏. 

If we consider 1/f noise, Q for eq. 60 corresponds to the trapped amount of charge eN in time 

∆t. The following applies to the variance <q2>: 

〈Q2〉 = e2〈N2〉 = Poisson = e2〈N〉 = e2cr〈Nt,τ〉t  

Nt,τ is the number of traps with time constant 𝜏 to 𝜏+ 𝜏. The following applies: 

Nt,τ = τ Nt   

where Nt is the total number of traps. 

The trapped charge carriers are released with a time constant 𝜏. Therefore: 

Q(t) = Q e−
t

τ  

This leads to the current pulse: 

Idssat(t) = k Q e
−
t

τ   (61) 

The pulse response Pin is defined as the output signal caused by the amount of charge of Q = 

1C. Because of this: 

Pin(t) = k e
−
t

τ  

This function has the following Fourier transformation: 

Pin(i) =
kτ

1+iτ
  

The power spectral density of the current is then: 

SI,τ(f) = 2
<Q2>

∆t
| Pin(iω)|

2 = 2e2cr〈Nt,τ〉
τ2k2

1+2τ2
  (62) 

If we calculate integral (60) we get formula (58). 

Equation 62 describes only the traps with the time constant 𝜏. We can assume that for all traps 

the time constants are in a wide range: 𝜏min to 𝜏max. 

The total power density for all traps is then: 

SI(f) = ∫ SI,τ(f)
τmax

τmin
= 2e2crk

2 ∫ 〈Nt〉
τ2

1+2τ2
dτ

τmax

τmin
~
2e2〈Nt〉k

2


~
µe2〈nt〉Idssat

L2nCox
′ f

 (63)  
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We can move the noise source to transistor gate. The following then applies: 

SV =
SI

gm
2 ~
µe2〈nt〉Idssat

L2nCox
′ gm
2 f

 (64)       

Since 

gm =
1

n
μCox
′ W

L
(Vgs − Vth) = √2

W

L
μCox′ Idssat  

we get: 

SV ~ 
µe2〈nt〉Idssat

L2nCox
′ gm
2 f
~
e2〈nt〉

2LWnCox
′2  f

   (65) 

We write it simplified: 

SV =
k1/f

f
 (66)  

k1/f ~
µe2〈nt〉Idssat

L2nCox
′ gm
2 f

  

 

1/f noise output of the charge sensitive amplifier 

Let us now calculate the contribution of the 1/f noise to the noise signal at the output of the 

charge sensitive amplifier. We can use the transfer function for the VT. 

H(iω) =
Vo

VT
=

(1+iωTZ)

(1+iωTr)(1+iωTf)
 ( 60 ) 

with: 

Tr =
CiCo+CiCf+CfCo

Cfgm
  

Tf = RfCf  

Tz = Rf(Cf + Ci
+)  

1/f noise contribution is given by the integral: 

< vo1/f T >
2= ∫ SV1/fT|H(f)|

2∞

0
df (66)  

The frequency range between 1/Tz and 1/Tf contributes the most to the integral. In this 

frequency range, we can simplify the formula (66): 

< vo1/f T >
2= k1/f ∫

ωTZ
2

1+ω2Tf
2

1/Tf
1/Tz

dω =
k1/f

2
 
Tz
2

Tf
2 ln(1 + ω

2Tf
2) |1/Tf1/Tz~ k1/f

(Cf+Ci
+)

Cf
2    

Interestingly, the integral does not depend on time constants when the ratio Tz/Tf is constant! 

For smaller time constants, S1/f decreases but the frequency range in the integral (1/Tz to 1/Tf) 

increases. 
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Figure 22: Frequency range between 1/Tz and 1/Tf contributes most to the integral 

 

The variance of the noise signal at the output of the charge amplifier then becomes: 

< vo >
2 =
1

4

1

Cf
2  ((Ci

+ + Cf)
2(
SVT

Tr
+ k1/f) + SIRTf + SIDTf)  

The power spectral densities are: 

SVT =
4kTn2/3

gm
  

(thermal noise) 

SIR =
4kT

Rf
  

(thermal noise) 

SID = 2eIleak  

(leakage current noise) 

k1/f ~
µe2〈nt〉Idssat

L2nCox
′ gm
2 f
~
e2〈nt〉

2LWnCox
′2  

  

 (1/f noise) 

When the detector leakage current is small and the time constant Tr is large, the 1/f noise 

dominates. W and L of the transistor should then be increased. A PMOS input transistor has 

smaller constant k1/f. 

Optimization for small 1/f noise can be done as the last step in the design.  

)log(

fT

zT

rT
)|H20log(| 2
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Figure 23: Optimization 

 

Summary 

Figure 24, Figure 25 and Figure 26 illustrate different noise sources. 

 

Figure 24: Noise in the transistor 

 

Figure 25: Sensor leakage current noise 
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Figure 26: Transistor mismatch 
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