Lecture 14
The topics of this lecture are:

e Noise Theory and Thermal Noise in Resistor

¢ Noise in the MOS transistor

¢ Noise in the voltage amplifier and the charge sensitive amplifier
e 1/f noise and transistor mismatch

Noise Theory Summary (see also DAS 2023 _Noise_Theory)
This chapter is a summary of the old lecture: DAS_2023 Noise_Theory.
Electronic noise is our perception of fluctuations in current flow or voltage.

In order to calculate the amplitude of the noise signal, it is necessary to know and
mathematically describe the source of the noise (the input variable) and the transfer function of
the measurement device (the circuit attached to the noise source).

If the circuit remains unchanged in time, the transfer function can be represented as a frequency-
dependent complex function H(s) (quotient of Fourier or Laplace-transformed signals).

H(S) = Vout(S)/Vin(S)

The circuit can also be represented using a pulse response. The representation with the help of
pulse response is suitable if the circuit changes over time — e.g. it is switched on at a certain
moment.

Thermal Noise in a Resistor

The electrons move in a resistor not only because of the field (drift) but also because they have
kinetic (thermal) energy. This additional movement causes the fluctuations in the current - the
noise. Let us try to calculate the noise.
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We divide (quantize) time into short time intervals At. In each time interval, a certain number
of electrons leave the resistor. The mean charge <Q> is equal to the current multiplied by At.

Because of the noise, the actual charge fluctuates around the mean value. We refer to these
fluctuations as g.

v

g - Deviation from the mean
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The (noise) charges g in short time intervals At can be understood as charge pulses. We assume
that the resistor is connected to a circuit. This circuit has a pulse response and a transfer function.

We want to calculate the noise signal at the output uout. Signal uout is generated by the noise
signals g produced by the resistor.
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Each input pulse generates an output signal. Each output signal is the product of the pulse
response and the noise charge q(r):

Uout(£) = q(DP(L,7)

P(t, 7) is the pulse response at a moment t to an input pulse with integral 1 (Dirac pulse) that
was generated at the moment .

The total amplitude of the output noise signal at a moment t is the sum of all output signals that
were generated in the past:

Uoue (8) = 2ece q(DP (L, 1)

We don't know the actual values of noise charges q(t) and can only calculate their variance. For
this reason, it is only possible to calculate the variance of the noise signal at the output. This
variance corresponds to the noise power.
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The following formula can be derived for the noise in the time domain:

w®?) = [* 9 (p(t, 12 dr

—00 At

At is the length of the time intervals.

P(t, 1) is the pulse response at moment t to an input pulse that was generated at the moment 7.
The formula for noise in time domain is suitable for systems that change over time, e.g. the
circuits that contain switches.

If our system does not change in time, we can also derive the corresponding formula in
frequency domain:

W?) = [ S(HIH(iw)|? df
S is the spectral power density of the noise source.

For white noise, it holds:
s(f) =242

When S is independent of At and has no frequency dependence, we have white noise. In this
case, the noise signal at the input can be modelled with arbitrarily short signals — Dirac pulses.
At. We call the noise white because the Fourier transform from the input pulses (Dirac pulses)
is a constant function. The noise at the input contains all frequencies, such as the white color,
contains all wavelengths.

If the noise pulses at the input have a slower shape and S has a frequency dependence, the noise
is not white. In this case, the following applies:

s(f) = 220 P, (i) 2



An example is the 1/f noise.

How large is the spectral power density for the thermal noise of a resistor? To answer this
question, we need to calculate the variance of noise signals g. Here's how we do it.

We can split the resistance into two parallel resistors. They have uniformly decreasing charge
densities. The total resistance of the parallel connection is R. A diffusion current flows in each
partial resistor. The total diffusion current is zero because both subcurrents have the same
magnitude and different directions.

The mean number of electrons that leaves each resistor-part in time is: I4;¢sAt/e. We can assume
that the actual number of electrons fluctuates around this mean.
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The standard distribution for discrete fluctuations is Poisson distribution. The variance of this
distribution is equal to the mean. For this reason, the variance of the charge g that leaves each
resistor-part in At is:

< q2 >= eldiffAt
The total variance is two times greater, because we have two resistor-parts.

If we consider the formula for diffusion current, the formula for resistance as a function of
mobility, and the Einstein equation:

kT

e

=|JY

we get:

Sir(f) = 4kT/R

Thermal noise is the result of diffusion currents (thermal movements) and discrete nature of the
charge. (Poisson Statistics).



Poisson distribution is important for noise theory. Poisson distribution is the standard
distribution for discrete random variables, just as the Gaussian distribution is the standard
distribution for continuous random variables. Poisson distribution has the property that the
variance (square of the standard deviation) is equal to the expected value (mean).

The noise of a resistor can be described with a current source with spectral power density Sir =
4KT/R. The unit of Sir is AZs.

|j‘> Syr(f) = 4kTR

SIr(D = 4kT/R <> []

INR R R

We can convert the current source with a parallel resistor into a voltage source with a series
resistor. For the voltage and current of the respective sources, hold:

U=IxR

The power density of the voltage source is Svr = R? Sr.
We obtain:

Syr(D) = 4kTR

The noise of a resistor can therefore also be described with a voltage source with a spectral
power density of Syr = 4kTR. The unit of Syr is V.




Noise in MOS transistor
The channel of the MOSFET can be seen of as a resistor with an uneven charge carrier density.

Thermal noise of the channel can be modelled with a current source. The power spectral density
can be calculated using the equation for the resistor:

4KT
SIT=E (1)

1/ <R> is the average conductance of the channel:

1 epw(Q) (2)

(R) L

<Q'> is the average charge/area (unit C/m?). It can be calculated as follows:

(@)= [, Q®dx (3)

Gate

Iy

()
N

Figure 1: Thermal noise in the MOSFET channel

Substituting (3) into (2) and (1), we get the formula for the power spectral density:
4kTWp

T Q@dx (4)

Let us assume that the transistor is in saturation.

W
Sir = 4kTp—(Q') =

It holds near source:
Q'(0) = ng(vgs — Vin)
Near the drain, the charge is:
QM) =0
Exact calculation of the integral leads to:
2~
(Q) = 3 Cox(vgs - Vth) ( S )
(The exact derivation of equation (5) is in the next paragraph.)
Substituting (5) into (4), we get
w2z .,
Sit = 4kT|1f§ Cox(vgs — Vin) (6)

The transconductance of the transistor is given by the following formula:
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Substituting the formula for gm (7) into that for Syt (6), we obtain the final equation for the
power spectral density of the current noise source in a MOSFET:

Sir = 4KTn>gp, (8)
Gate
VX (O) - 0 VX (L) = Vdssat
Q'(O) = Cox (Vgs - Vth) Q (L) =0

Figure 2: Thermal noise in the MOSFET channel

Derivation of the formula for transistor current l¢s and the average channel charge
(optional)

In lecture 2 we had the following formula for the channel charge per area:
Q’ = C(,)x(vgs - Vth) ( 9 )
The formula is valid in strong inversion for small Vs.

The formula must be adjusted for larger Vgs. The channel charge per area varies from the value
given by (9) on the source side to zero on the drain side, where the channel pinches off (Figure
2).

Let us denote the potential in the channel region (at the boundary between silicon and gate
oxide) as Vx(x). Coordinate x goes from source to drain (Figure 2). Let us define Vx with respect
to the source potential Vs. That means:

Vx(0) =0
and
VX(L) = Vds




The channel charge per area at any point X is:

Q (X) - Cox( - —nV, ) (10)
Or simplified
QX = Cox(vgst - an); Vgst EVgs — Vin (11)

This paragraph is a repeat from Lecture 3.

First, let us derive the equation for lgs current for any Vs.

We start with the formula for drift current:

las = RWQ'(¥) Byl = 1 Cox W (Vgst — nVx) |Ex| (12)

Ex is the E-field component in the x-direction, W is the gate width, p is the mobility of the
charge carriers.

The following applies:
(13)

Substltutlng (13) into (12), we get:
dVX

dv
|Ex| = —=

lgs = HCox W (Vgst nv, )
or
lgsdx = pCox W (Vgse — nVy )dvy (14)
We can integrate the two sides:

L Vs '
Jy Tasdx = [ 1 Cox W (Vgse — nVy )dvy

It follows:

s = on HCSXVLV [ gst ( erds) ]

After squaring the second term, we get the general formula for transistor current:

, W Vi
lgs = 1 Coxf [Vgstvds —n-%=

In saturation:

(15)

Vas = Vassar = 2 (16)

Substituting this into (15), we get the formula for saturation current:
lassat = -1 Cox Vi (17)

Now Iet us calculate the average channel charge in a transistor in saturation:
Q)= [ Q®dx

Let us start with the integral:

L, L .,
fo Q' (x)dx = fo COX(Vgst - an)dx
The integral is the total charge in the channel divided by W.
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Since we do not know the function Vx(x), we change the integration variable from x to Vx
(substitution):

Q L ! — L ! dVX \ ssa ! d\/X
W = fo Cox(Vgst - nVX)dX - fo Cox(Vgst - an) dV,/dx f dssat C (Vgst - nVX) I, |
The E field can be calculated using (12):
= 1 Chy W (Vyge — V) [Exl; = [Eyl = ds (18)

ds K Lox gst X xb X ucl, w (Vgst_nvx)
It follows:
Q V s 7 vy u(COX) W V ssa 2
W = d C (Vgst nV, )E T d t(Vgst HVX) dVX
_ u(ch)zw (Vgst_nvdssat)3 _ (Vgst)3 _ n(cox )ZW (Vgst)3 (19)
- nlgg 3 - nlgg 3

In saturation, lgs = lassat. Substituting (17) into (19), we get:

Cox ) W (Vgs '
W ( nlaz ( g3t) Lcoxvgst ( 20 )

Therefore it is:

Q)= [y Q()dx =2CouVge  (21)
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Example voltage amplifier

Let us consider the voltage amplifier as in lecture 6. We consider the variant with the MOSFET
amplifier and resistor Rs. We use resistor R¢ for DC feedback.
In Lecture 6 we derived the transfer function

1 sT¢
(sTp+1) (sTg+1)

Vo(s) = —Vo(s) C (22)

The time constants are:

sCroa s(CjCo+CiCs+CeCyo)
T, = 220t - 3 23
r Bgm Cf8m ( )
with
- cfcr o _ G BXgmRo 4 _
Co =0Co + ey’ B = crecy’ o= 1+B><ngo’C1 =C+ Cg
And

Te = R¢Ct (24)

If we have a voltage step with amplitude 1 at the input, the output voltage magnitude increases
within 3 x T, to about Ci/Cr and decreases again to 0 (Figure 3 above). (Gain is negative.)

AL o e

E3Tr E 3Tf = 3Rfo

Rf
| I— |
C
I
[
\\Eﬁ R, Vo
C i Ti\ >
J— < F Iy f—
5VS CO

Figure 3: Voltage amplifier with noise sources. The figure above shows the step response.

The most important noise sources are the transistor T (noise source It) and the resistor Rs (noise
source Ir). The components connected to the input of the amplifier generate large noise at the
output, because the noise is amplified. Resistor R, contributes little to the noise since it is
connected directly to the amplifier output, and its noise is not amplified. Figure 3 shows the
circuit with the noise sources It and Ir (white) and the input signal source Vs (yellow), which
is switched off in further analysis. We will perform the frequency dependent noise analysis.
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Step 1
We can move the transistor noise source to the input of the amplifier (Figure 4).

The following idea helps us: noise of the transistor can be modelled either with the current
source IT between the drain and the source or with the voltage source Vr at the gate. Since an
additional voltage at the gate - vg - produces a drain-source current gm x Vg, and since the power
densities are proportional to the square of the voltage or current, the following holds:

_ 4§an

S
e T T ()

Figure 4: The noise source It can be moved to transistor input

Let us note the following:

If we move the noise sources to the input of a two-port circuit, and if that circuit has a finite
input impedance, we must use a voltage source in series and a current source in parallel with

the input.

— O {)CD - O

s Cg OmVgs | h,odt Injin Cg ImVgs
U Vn,in = in,out/gm
. _ Vnjin _
Injin = 7 SCgVn,in
in

Figure 5: Moving of the noise source - Cq4 inside two-port

However, we will define the gate and source, as the input of the transistor for noise analysis,
after the Cgs. The two-port then has an infinite input impedance and the parallel current noise
source has zero amplitude. A voltage source is sufficient for modelling the noise.

13



L= 0hL"0m= O

Cg s OmVgs | h,odt g Injn ImVgs
U Vnin = in,out/gm
V .
in,in == 0
Zin
Vn,in m
— T \J
Cg ImVgs

Vnin = ln,out/gm

Figure 6: Moving of noise source - Cgq in front of the two-port

Step 2: Moving of the Source Ir

The current source Ir is connected between the input and the output of the amplifier (Figure 3).
The current that the noise source directs into the output produces little noise. The noise current
that flows into the input is amplified by the amplifier and generates a large noise at the amplifier
output. It is therefore equal for the noise calculation whether the source is connected between
the input and the output of the amplifier or between the input of the amplifier and ground. We

14



will connect the source Ir between the amplifier-input and the ground as this makes it easier to
calculate the transfer function.

Figure 7: Moving of the noise source Ir

Step 3

To calculate the variance (power) of the noise signal at the amplifier-output, we will use the
formula for noise in the frequency domain. If there are multiple sources of noise, the

15



contributions can be counted separately. The total noise power is the sum of individual
contributions:

<vi>= ["SrOHR0)]? + Syr()IHyr(iw)*)df (26)

We now need to derive the transfer functions H(iw) for two noise sources.
Step 4

Transfer function for the Ir source.

We will perform a simplified analysis and assume that we have virtual ground at point v; (Figure
8).

dv Re
H(iw) = —==—Z;=—
( (D) dIg f 1+sR¢C¢

(27)
Contribution of the source Ir to the total noise is:
<VOIR) - f |1+1mT

RE n _ 1R¢
Ronte2 — "Ry

|t = s 7 | o) = St an Tl =
IR 571 1+iwTs f IR 27T, £710

(28)

B
’

Figure 8: Noise source Ir

By substituting the power spectral density formula, we get:

_ R¢ 1Rf4kT _ kT
< Vorr >2 —‘SIRC TG R C (29)
f f f f

Figure 9 shows the Bode diagram of the transfer function |H|2. The yellow area contributes
significantly to the integral in (28).
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Figure 9: Bode plot of the Hr transfer function

The formula for the noise power caused by the source Ir can be rewritten as follows:
11
4 C?

We use the result Tt = Rs Cs.

< Vor >% = SirTt (30)

This formula is easy to remember: the noise power depends on the power spectral density S
multiplied by the time constant Tr.

Step 5

For the voltage source VT we can derive the transfer function as follows: We assume that vy is
virtual ground (Figure 10). It follows:

Rf 1

Zi+Zf 1+iu)Rfo+iu)Ci 1+i(L)Rf(Cf+C?-)
Vo = — VT = — 1 VT = -
Z; - 1+iwR¢Ct
iwCj
+ _
Ci = Cj + Cgs

The transfer function is:

Vo _ 1+ioRe(Ce+Cy)  1+iwRe(Ce+CY)
Vr - 1+iwR¢Cs - 1+iwTe

H(iw) =

(31)

17



Figure 10: Noise source Vt

Note that this transfer function (31) predicts constant gain for high frequencies (Figure 11). If
we substituted this function in formula (26), we would obtain infinite noise power. Something
IS wrong.

20log(|H[") T,

O]

Gt + G\’
Ce

log(w)

Figure 11: Bode plot of the Hir transfer function, case without Tr

For high frequencies, the virtual ground assumption no longer applies. We did a more detailed
analysis of the circuit in Lecture 6 and we derived two time constants in the transfer function:

sCroa
T = . (32)

Tr = R¢Cs (33)

The circuit in Lecture 6 is the same as the circuit in Figure 10 except for the position of the
input source. The position of the input source does not change the time constants in the
denominator of the transfer function (the poles).

We can extend formula (31) by adding the second time constant:

N Vo _ (1+i0Tz)
H(iw) = Vr  (1+ioT)(A+ieTy) (34)

with:

_ sCrpa

- Bgm

r

18



Tr = ReC

T, = Re(Ce + C;7)

The following applies to the time constants:
T,>Tt> T,

20log(|H|?)

T¢ Cs

log(w)

Figure 12: Bode plot of transfer function Hir, case with T,

The frequency range between 1/Tf and 1/T: (yellow area in Figure 12) has the largest
contribution to the integral. In this frequency region we can simplify the transfer function (34)
as follows:

T, _CeHC 1
T(1+iwTy)  Cf 1+iwTy

H(w)~ (35)

It is then relatively easy to calculate the noise power:

" f = yp (L) LT, (St L

2
cf+ci+> | 1
Ce 21Ty 2 Ce 4Ty

Ce 1+iwTy

o
< Vor >%= | SVT(
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<vgp S = 4KkTn2/3 (cf+ci+)2 _1 _ kTn2/3 (cf+ci+)2 1 (36)

8m Ce 4Ty 8m Ce Tr

The formula for the noise power due to source V1 can be rewritten as:

2
21 ﬂ)sv_T
<ver>2=1( L) 3 (37)

Summary

The variance of the noise signal at the output of the voltage amplifier is given by the following
formulas:

< Vo 32 =< Vop >+ < vor >2 =25 ((CF + )2 + SRTY) (38)
f r

SIR=R—f (39)

4kTn2/3

Syr = (40)

Let us now calculate the Signal to Noise Ratio (SNR).

A voltage step at the input with amplitude Visig causes an output signal with amplitude: (Figure
13)

20



Vosig = Visig (a (C:_;)z ~ Vicig (2_;)2 (41)

Signal to noise ratio is:

<vo>? 1 _ 1 11 4 2 Svr
V?)Sig - SNRZ - V?)Sig 4 C% ((Cl + Cf) Tr + SIRTf) (42)
or
<vo>2 1 1 11 + 2 Svt
= = - ((Cf + Cp)? =+ SRT 43

An “equivalent noise signal” (equivalent noise voltage - ENV) can be defined as a signal at the
input that leads to SNR = 1.

11 S
ENV? = Za((ci+ + Cp)? % + SirTp)

This ENV is equal to “input referred noise”.

s () 4 1

Vo (t)

Figure 13: Step response

Discussion
We would like to optimize the amplifier's parameters to achieve maximum SNR.
What sizes can we vary? We want the gain A = Ci/Cs to remain constant during optimization.

We can increase Ci and Cs by the same factor. Cj and Ct magnification helps to reduce R noise
contribution (30):

_L Re4kT _ KT
4AZ% C¢ R¢ - A2Cs

1 T
ENVg =Sz = (44)

Transistor noise contribution remains unchanged (37):

ENVZ = kT2/3(

gm

cf+ci+)2 1

. )T (45)

We can enlarge C,. Larger Co, makes the amplifier slower and helps to reduce the contribution
of the transistor noise. This follows from the formula for the time constant:

__sCrha
Tr B B8m (46 )

21



We can increase the transconductance gm by multiplying the transistor and Ro. Larger gm (for
constant Co) makes the transistor faster and leaves the noise unchanged. (See the formula 37
and the formula for the time constant T, (45).

22



Optimizing the amplifier to achieve required SNR, gain and bandwidth (summary)

Let us start with the "minimum size" Cs (e.g. 10 fF) and with a small transistor and small
transistor current (e.g. 10 pA).

First, we scale up Cr and C; until the Rt - noise contribution becomes small enough.

We increase C, until the transistor noise contribution becomes small enough.

After this, we check whether the amplifier has the required bandwidth i.e. is fast enough.
If the amplifier is too slow, we increase gm by multiplying the transistor and the Ro.

Less R noise less V¢ noise Correct bandwidth

® A O ©

- 1 A= % | 5

Figure 14: Optimization method

This method can result in too large C{" = C4 + C; and too large power consumption.
The following applies to most analogue circuits (see e.g. formula 37):

SNR? ~ 1/T,

SNR? ~ 1/gm = 1/ power consumption

Sometimes, the following figure of merit is defined as a measure of how well a circuit has been
optimized:

FOM = power consumption Tr /SNR?
This figure of merit should be similar for all well optimized circuits.

Circuit with smaller FOM is better. The figure of merit allows us to compare different circuits.
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Charge sensitive amplifier

Charge sensitive amplifier is an important circuit. The input signal is a current pulse with charge
Q, the output signal is proportional to Q and independent of the shape of the pulse.

A charge sensitive amplifier (Figure 15) has the same form as a voltage amplifier.
Let us derive the transfer function of the charge sensitive amplifier.
We start with the transfer function of the voltage amplifier.

The transfer function of the voltage amplifier is:

_ G 1 sTg
Vo (s) = Vs(s) Cs a (sTp+1) (sTg+1)

(47)

The input voltage source (Figure 3) can be converted to an equivalent current source (Figure
15). The following applies to the current of the current source and the voltage of the voltage
source:

is(s) _
sCi

vs(s) (45b)

In the time domain, the current i(t) is the integral of the voltage v(t) divided by Ci.

If we substitute (45b) into (22), we get the transfer function of the charge amplifier:
Vo(s) =

From this it follows: A current pulse with the charge Q generates an output signal with the
amplitude:

Q

_ is(s) sT¢ _ g 1 sT¢
Cr L ETADGTHD L GT+1) (5Tet1) (45c)

Vosig"’ isfig (48)

C

(Figure 15) The output voltage increases to the maximum amplitude (Q/Cs) within 3 x T, and
goes back down to 0. (The gain is negative.)
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is(D)

Io

vo()

3Tr

3Tf = 3Rfo

\4

Figure 15: Charge sensitive amplifier. Top - pulse response

\4

There are three main sources of noise in the circuit (Figure 16): the input transistor (source V),

the resistor Rt (source IR).

Figure 16: Charge sensitive amplifier. Sources of noise
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The third source we have in the case that a sensor, having a leakage current, is connected to the
amplifier as a signal source (noise source Ip).

Since the circuit has the same form as the voltage amplifier, the same formulas also apply.
Therefore, the variance of the noise signal at the output is:

<v,>%= ((c+ +C )2 + SirTs + SipTy) (49)

The power spectral densities are

4kTn2/3
8m

Svr =
(thermal noise)

SR = —
IR R¢

(thermal noise)
Sip = 2eljeak
(leakage current noise)

Signal to noise ratio (SNR) is:

<V0>2 _ 1 _ 1 + 2 SV_T
Ve SNRZ V2 4 c2 ((C +Cp) T SIRTf) (50)
with
Qisi
Vosig = Cfg
Therefore:
<V0>2 1 1 + 2 SVT
= e = S(@ +c0? 22+ spTy) (51)

Equivalent noise signal (charge), defined as the charge signal at the input that leads to SNR =
1:

ENC? = 2 ((Cf" + €222 T+ STy + SipTy) (52)
An input signal = ENC produces at the output a signal with the amplitude equal to the standard

deviation of the noise signal. It is roughly the smallest measurable signal if the measurement is
repeated just once.

Optimization of the charge amplifier
Let us optimize the parameters of the charge amplifier to achieve maximum SNR.

It is advantageous to minimize the input capacitance (the sensor capacitance). This reduces the
noise contribution of the transistor.

We can also choose a small Cr to reduce the Rr noise contribution:

1
ENC3 = ZS.IRRf(:f
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We can also enlarge Co. Larger Co makes the amplifier slower (T increases) and helps with
transistor noise:

_ sCly
aBgm

We can increase the transconductance gm by multiplying the transistor and Ro. Larger gm (at
constant Co) makes the transistor faster and leaves the noise unchanged.

r

smaller V noise Correct bandwidth

ller Rg noi
@ \H\sma er Rg noise H @ H

smaller V; noise

LT T T8 T | T
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is(t) A Q

T Low noise contribution from leakage current

vo(D) l

4—
Large noise contribution from the leakage current

Vo ()
\ Low noise contribution from the input transistor
T Large of noise contribution from the input transistor
Vo () Optimum

Figure 17: Noise and time constants

Figure 17 illustrates the optimization of the charge-sensitive amplifier for maximum SNR.
It is important to minimize C;.

Short time constant Tt minimizes the sensor leakage current noise contribution.

Slow time constant T, is good to reduce the transistor noise contribution.

It can be shown that SNR is maximal when both time constants are similar in size.

28



1/f noise and transistor mismatch
We will consider two effects that at first glance appear to be quite different.

If we make measurements on a group of transistors with identical layouts, we would find that
the drain currents are slightly different even if all other parameters such as voltages and
temperature are the same. The currents are not equal, we have a “mismatch”. The mismatch is
time-independent, it is a permanent mismatch. The mismatch is described by its variance. The
actual current value is a random variable, described by its mean value and variance.

1/f noise (or flicker noise) is the variation in transistor current over time.

Both effects 1/f noise and mismatch can be described as fluctuations of the charge in the
transistor channel.

These fluctuations are caused by so-called trap states in the gate oxide near the silicon.
Let us consider such a trap. The trap can be described by two properties.

First, we have a probability cpAt per time interval At that a charge carrier will be caught in the
trap. Cr stands for capture rate. Second, we have the emission time 7. In average, the charge
carrier spends the time 7 in the trap.

Now let us consider a larger number of traps Nt. The mean number of trapped charge carriers
in time At is:
(AN) = N,c At

These charge carriers are released with a time constant 7. After time t, the number of trapped
charge carries is:

t
AN(t) = ANe*
We obtain the total number of captured charge carriers as the integral:

t—u

t
< Ntrapped >= j NtCI‘ e_?du = NtCrT
—o0

Transistor current in strong inversion depends on the total charge in the channel. The MOS
structure is electro-neutral, therefore the sum of charges below the gate electrode is equal to the
charge in the gate electrode. Trapping of electrons reduces the amount of charge in the channel.
The transistor current decreases because the conductivity of the channel decreases. As the
electrons get released, the current recovers. Since this process - catching and releasing electrons

- is repeated over and over again, current noise is generated.

At

b

g

Figure 18: Charge carriers are trapped - current drops
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T S

Figure 19: Charge carriers are released — current increases
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Figure 20: Trapping and releasing electrons creates noise

i

Figure 21: Mismatch. The number of trapped charge carriers varies from transistor to
transistor

If we repeat measurements of the current through a transistor at different times, the respective
current value depends on the number of currently trapped charge carriers. We assume that the
measurements are far away in time and are thus independent.

30



To explain mismatch, we could assume that the charge carriers stay in the traps permanently.
If we then repeat the current measurement on a transistor, we always get the same value. If we
measure a group of several transistors, the current depends on the number of trapped charge
carriers in the measured transistor. This number varies from transistor to transistor. Since in
both cases the current fluctuation depends on the number of trapped charge carriers, with the
only difference being that the noise is a fluctuation in time and the mismatch is a fluctuation
within a group of transistors, we expect the same formula for the variance of the current.

31



Variance of the current
Let us calculate the variance of the transistor current.
The transistor current (strong inversion, saturation) is given by the following formula:

;) W
Idssat Cox L V ( 53 )

Let us calculate the current as a function of the total charge in the channel. The charge is given
by the following equation:

2 !
Q= 3 LWCOXVgSt ( 54 )

Substituting this equation into (50), we obtain:

lassat = =15 VgstQ =kQ  (55)

with

k= 43n Lp’2 V

The change of channel charge dQ leads to the following change in current:
dlgssar = kdQ (56)

The variance of this change is:

(dl3ssar) = k?(dQ?) (57)

The change in channel charge is caused by trapping of charge carriers.
dQ = eNrapped

If we assume Poisson distribution, then if holds:

(dQ*) = €2 (NZ.appea) = €*(Nirapped) = €%, TNy = e?c,tn LW (58)
nt is the number of traps per unit area.

Substituting this into (55), we get:

2 3 u 2 2
<dldssat>1/f = (EE Vgst) e“LW CrT<nt) =

3\2 ; W Zert(ng)] ssa
ne?ertng e (5) 2 (350 Gy Vilee) ~ " (59)

The relative change in current gets smaller when L is increased.

A similar equation also applies for current-mismatch:

2
2 pe Cp(nt)ldssat
<dldssat>mismatch~ 27 ( 59 )
L“nCqyx

Instead of the product of the capture rate and time (cr 7), we have used the capture probability
Cp In eq. 59.
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Discussion

In order to minimize 1/f noise and mismatch, the gate length should be increased. In order to
keep Vassat unchanged, the gate width (W) must be scaled up as well.

We can model the 1/f noise or mismatch with a current source at the transistor drain. We can
also move the noise/offset source to the transistor gate. The following applies:

(dv2 ) _ (dlés) _ ue?(n)lgssat
s/ — 2 20 o2
8m L*nCox8m

Let us note that

1 ., W W
8m = HCox n (VgS - Vth) =2 L HCoxlassat

It follows:

2 pe?(np)lgssat e?(ny)
<dV S) ~ Tzl o2 2
L2nCox8mf 2LWnCgy

Transistors with a large gate area have good matching and small 1/f noise.

From the book of Razavi (Design of Analog CMOS Integrated Circuits):

It is therefore not surprising to see devices having areas of several hundred square microns in
low-noise applications.

PMOS devices exhibit less 1/ f noise than NMOS transistors because the former carry the holes
in a “buried channel,” i.e., at some distance from the oxide-silicon interface, and hence trap and
release the carriers to a lesser extent.

A high-pass filter or capacitive coupling makes a circuit less sensitive to 1/f noise or transistor
mismatch. Using a high-pass filter is similar to a double measurement, where first a base-line
measurement is performed, then a signal measurement is made, and then the difference is
calculated. Such differential measurements are less affected by fluctuations caused by 1/f noise
or transistor mismatch.

33




Power spectral density

The formula (58) corresponds to the integral of the power spectral density:

(dl3ssadsyr = Jy S(E) df
How large is S(f)? We need to know S(f) to calculate noise when a transistor is used in a circuit.

The following equation holds: (DAS_2023 Rauschen_Theorie)

S(®) = 2522 | B, (iw)* (60)

Let us first calculate the power spectral density for the traps with the time constant 7 to T+Art.

If we consider 1/f noise, Q for eq. 60 corresponds to the trapped amount of charge eAN in time
At. The following applies to the variance <g>>:

(Q?) = e?(AN?) = Poisson = e%(AN) = e?c (N )At

N¢ - is the number of traps with time constant 7 to 7+A . The following applies:
Ny = AT N;

where Nt is the total number of traps.

The trapped charge carriers are released with a time constant . Therefore:

t

Q) =Qe=

This leads to the current pulse:

lassac(® =k Qe (61)

The pulse response Pin is defined as the output signal caused by the amount of charge of Q =
1C. Because of this:

t
Pn( =ke =

This function has the following Fourier transformation:

kt
1+ioT

Pip(im) =

The power spectral density of the current is then:

TZ k2

1+ 0212

S1e() = 2582 By (i0) 2 = 2¢2¢,(Ny ) (62)
If we calculate integral (60) we get formula (58).

Equation 62 describes only the traps with the time constant 7. We can assume that for all traps
the time constants are in a wide range: Tmin t0 Tmax.

The total power density for all traps is then:

2 2 2 2
SI(f) — f‘[‘:lnilalx SI,T(f) — Zezcrkz f‘[‘tn:i)((Nt) T d‘[N 2e (Nt)k ~ ue (nt>ldssat (63)

1+021? ® L2nClf
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We can move the noise source to transistor gate. The following then applies:

_ S Hez(nt)ldssat
Sv =~y (04)
8m L*nCox8m

Since
W !
8m p-cox L (Vgs - Vth) = 2? HCoxIdssat
we get:
2 2
SV ~ ue (nt)ldssatN € (nt) (65)

LZnCoxghf  2LWnCly f

We write it simplified:
Sy = - (66)

ue?(np)lgssat
k1/ YT o2
L?nCoxgmf

1/f noise output of the charge sensitive amplifier

Let us now calculate the contribution of the 1/f noise to the noise signal at the output of the
charge sensitive amplifier. We can use the transfer function for the V.

(1+iwTy)

H(lw) - V_T (1+iwTp)(1+iwTy)

(60)

with:
_ CiCo+CiCe+CeCy
Cfgm

Tr = R¢Cs

T, = Re(C¢ + CF)

1/f noise contribution is given by the integral:
< Voy/fT >°= fooo Sv1/er[H(O]? df  (66)

The frequency range between 1/T, and 1/Tr contributes the most to the integral. In this
frequency range, we can simplify the formula (66):

(Cf+C )

1/T T2 £ TZ
<Vorsrr >*= Kyt J; /Tzf1+ ZZT2 ©= ;/ l (1+ w?’Tf) |1/Tf1/Tz~ ks

Interestingly, the integral does not depend on time constants when the ratio Tz/Tf is constant!
For smaller time constants, Sy decreases but the frequency range in the integral (1/T, to 1/Ty)
increases.
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Figure 22: Frequency range between 1/T; and 1/Tt contributes most to the integral

The variance of the noise signal at the output of the charge amplifier then becomes:
11 S
<vo >? = ic ((C +C* (G + kyyp) + STy + SipTp)

The power spectral densities are:

__ 4kTn2/3
SVT -
8m

(thermal noise)

Sir =

(thermal noise)
Sip = 2€ljeax

(leakage current noise)

k NHez(nt)IdssatN ez<nt)
V8T Lanchyghf  2Lwncl

(1/f noise)

When the detector leakage current is small and the time constant T is large, the 1/f noise
dominates. W and L of the transistor should then be increased. A PMOS input transistor has

smaller constant k.

Optimization for small 1/f noise can be done as the last step in the design.
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Figure 23: Optimization

Summary

Figure 24, Figure 25 and Figure 26 illustrate different noise sources.

Thermisches Rauschen t
! '/\/\/\/\_\/
1/f Rauschen t >

Figure 24: Noise in the transistor
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Figure 25: Sensor leakage current noise
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Figure 26: Transistor mismatch
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