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Lecture 10 and Lecture 11 

The topic of the lecture 10 and 11 are the amplifiers with two amplifying stages. 

We will present two application examples: the voltage amplifier and the linear regulator 

Implementation of the voltage amplifier with a single-stage amplifier 

Implementation of the voltage amplifier/linear regulator with two-stage amplifier - generic 

circuit 

Step response 

Condition for aperiodic response 

Nyquist stability criterion 

Voltage amplifier with two amplifier stages with and without frequency compensation 

Linear low dropout regulator (LDO regulator) implemented with a two-stage amplifier with 

frequency compensation 

Miller effect 

Integrator 

Lecture 10 

Two-stage amplifiers 

In the previous lectures, we presented, among others, the common source amplifier and the 

operational amplifier with current mirror. Both amplifiers have a voltage-controlled current 

source in their small-signal model (Figure 1, top). This current source can be converted into a 

voltage source, as shown in Figure 1, bottom. 
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Fig 1: Single-stage amplifier, small signal model with current source (top), small signal model 

with voltage source (bottom) and symbol (right) 

Since the small signal model contains a single voltage controlled source, we call these 

amplifiers single-stage amplifiers. 

A single-stage amplifier is a good choice when the amplifier has to drive a purely capacitive 

load that is not very large (< p F). This is usually the case when the amplifiers perform on-chip 

signal processing. 

In this lecture we will introduce the amplifiers with two stages. 
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Fig 2: Voltage amplifier and linear regulator and their specifications 

Let us introduce two application examples (Fig 2). 

1) A voltage amplifier with feedback is to be designed. The amplifier output is connected 

to a chip pad and it should drive a line with a 100 Ω termination resistance. The 

capacitive load at the pad is 100 pF. The amplifier should have a gain with feedback 

(closed loop gain) of 50. The open loop gain AOL should be 1000. 

2) A power supply voltage VDD = 1 V for a chip should be generated from a voltage VIN 

which is not particularly precise: VIN = 1.2 - 2.5 V. (VIN can be generated by a battery.) 

A reference voltage generator of Vref = 1 V (or less) is available. This generator 

produces a constant voltage Vref that is independent of VIN. Its output resistance is high 

(rout, ref ~ 1 MΩ). The current consumption of the chip is 0-100 mA. The chip can be 

modelled with a 10 nF capacitor and a current source. We use a so-called linear regulator 

(low dropout LDO linear regulator) for this task. The linear regulator is based on a 

differential amplifier with feedback (non-inverting amplifier) and a reference voltage 

source. The regulator should have an output resistance of 0.1 Ω (Figure 2). 

In both cases we could use a single-stage amplifier. However, this would not be the best solution 

for the reasons described here: 
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 To achieve an open loop gain of 1000 we would have to use an amplifier with a folded cascode. 

 

Fig 3: Amplifier with folded cascode - the standard variant with Ibias = 50 µA 

The amplifier that we presented in lecture 8 had a current gain of gm = 1 mS with a bias current 

of Ibias = 50 µA. We call our amplifier with 50 µA bias current the standard amplifier (Figure 

3). The standard cascode amplifier has an output resistance of rout = 1 MΩ and a voltage gain 

of gm rout = 1000. 

If this amplifier drives a load resistance of Rload = 100 Ω, its open loop gain is reduced to: 

AOL = gm (rout || Rload) ~ gm Rload = 0.1 (Figure 4).  

 

 

Fig 4: The standard amplifier with load resistance 

In order to achieve larger amplification, we have to match the impedances and connect several 

standard amplifiers in parallel until we reach rout ~ Rload. 
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Fig 5: Single-stage amplifier, matching of impedances 

If we connect 10000 amplifiers in parallel, the full circuit has the transconductance: 

gm, par = 10000  gm = 10 Si 

and the output resistance 

rout, par = rout / 10000 = 100 Ω (Figure 5). 

The open loop gain (absolute value) is about 

| AOL | = gm, par (rout, par || Rload) ~ 0.5 gm, par Rload = 500. 

(One half of the specified) The total bias current is 

Ibias, par = 10000  Ibias = 500 mA. 

We will neglect that the DC current through Rload contributes to the transistor bias current and 

thereby influences its transconductance. 

Therefore we only achieve half of the specified gain and have to accept a very large bias current 

and a large layout area. The large bias current leads to a large power consumption. The gate 

capacitance would also be large, approximately: 

Cgs, par = 10000  10 fF = 100 pF. 

We could achieve the gain of 50 by choosing Ci / Cf = 50. In the case of Ci << Cgs, par following 

applies: 

|βAOL| =
Cf

Ci+Cgs,par+Cf
|AOL|~

1

1+
Cgs,par

Ci

Cf

Ci
|AOL| ≪

Cf

Ci
|AOL| = 10  

The closed loop gain (gain with feedback) 
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AFB =
AINAOL

1+|βAOL|
  

Would the strongly depend on AOL, because the fraction in Mason’s gain formula cannot be 

reduced by shortening AOL. 

For this reason, let us chose: 

Ci = Cgs,par = 100 pF und Cf = 2pF. 

It follows:  

|βAOL| = 5  

The rise time of the step response is given by the following formula (Lecture 6): 

r~
Cload(Cgs+Ci)

gmCf
~ 2|AFB|

Cload

gm
~ 100

100pF

10Si
= 1ns  ( 1 ) 

Note that, if the input source has an internal resistance Ri, the time constant at the input is i = 

RiCi. This time constant slows down the amplifier significantly. For Ri = 100Ω, we get: 

 i ~ RiCi =  100pF  100Ω = 10ns  ( 2 ) 

Disadvantages of the circuit of Figure 5 are a large power consumption, a large layout area and 

a large capacitive load Ci for the input source. 
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Two-stage amplifiers 

Another solution for the implementation of the voltage amplifier and the regulator is to connect 

two amplifier stages in series. 

 

 

Fig 6: Voltage amplifier implemented with two amplifier stages 
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Fig 7: Linear regulator implemented with two amplifier stages 

Figure 6 shows the voltage amplifier with feedback that employs two amplifier stages. 

The linear regulator is shown in Figure 7. The input source is the reference source Vref. 

We will discuss the voltage amplifier first. 
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Voltage amplifier with two stages 

Let us derive the transfer function of the two-stage voltage amplifier with feedback. Figure 8 

(bottom part) shows the small signal model. We use generic names for the capacitances and 

resistances at the amplifier outputs C1, C2, R1 and R2. 

 

Fig 8: Voltage amplifier based on two amplifying stages and feedback. Top: block circuit. 

Bottom: small signal model. 

The voltage gain with feedback is defined as: 

AFB(s) =
vout(s)

vin(s)
  

It can be calculated using Mason's formula: 

AFB(s) =
FF+AINAOL

1−βAOL
    ( 3 ) 

AIN and β are real numbers in our case. 

The following applies: 

β =
Cf

Cf+Ci
 ( 4 ) 

and 

Ci

Cf

vin vout
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vin1 vin2

voutvin
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AIN =
Ci

Cf+Ci
 ( 5 ) 

Let us make the following assumption: The impedance: 

Z2(s) =
1

sC2
||R2 =

R2

sR2C2+1
 ( 6 ) 

is smaller than other impedances. Therefore it follows: 

FF = 0, 

and 

AFB(s) =
AINAOL

1−βAOL
 ( 7 ) 

 

Fig 9: Test circuit for calculation of the open loop gain 

Figure 9 shows the test circuit for calculation of the open loop gain 

 

AOL(s) = vout(s)/vtest  

The open loop gain is: 

AOL(s) = −gm1Z1gm2Z2 ( 8 ) 

Z1 and Z2 are the impedances seen by the sources gm1 and gm2: 

Z1(s) =
1

sC1
||R1 =

R1

sR1C1+1
 ( 9 ) 

Z2(s) =
1

sC2
||
Cf+Ci

sCfCi
||R2 =

R2

sR2C2+1
 ( 10 ) 

We have assumed that the serial capacitance of Cf and Ci: Cf Ci/(Cf + Ci) ~ Cf is much smaller 

than C2.   

If we substitute (9) and (10) in (8), we obtain: 

gm1vin1 R1 C1 R2 C2gm2vin2

vin1 vin2 vout

vin

Cf

Ci vtest
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AOL(s) =
−gm1R1gm2R2

(1+sR1C1)(1+sR2C2)
 ( 11 ) 

Let us define two time constants and two voltage gains: 

1  R1C1, 2  R2C2, A1  gm1R1, A2  gm2R2 ( 12 ) 

Let us also define the DC open loop gain: 

  

AOL,DC  −gm1R1gm2R2  ( 13 ) 

It holds then: 

AOL(s) =
AOL,DC

(1+s1)(1+s2)
=

AOL,DC

12s2+(1+2)s+1
 ( 14 ) 

If we insert (4), (5) and (14) in (3) we obtain the transfer function of the circuit with feedback: 

AFB(s) =
AINAOL,DC

1−βAOL,DC

1
12

1−βAOL,DC
s2+

(1+2)

1−βAOL,DC
s+1
= AFB,DC

1

Q(s)
 ( 15 ) 

Q is the characteristic polynomial of the transfer function. 

Influence of poles of AIN on step response of AFB 

If we replace the complex frequency s with the derivative (d/dt) operator in (15), we obtain the 

differential equation for the output voltage. The step response has the following form: 

  

uout,imp(t)  h(t)(C0 + C1e
λ1t + C2e

λ2t)  ( 16 ) 

Factors λ1 and λ2 are the solutions (roots) of the polynomial Q (s) in (15), or the poles of AFB(s). 

Q(λ) = 0 

The polynomial Q (s) can be represented in the following canonical form: 

12

1−βAOL,DC
s2 +

(1+2)

1−βAOL,DC
s + 1 = (

s

ω0
)
2

+ (
1

Q
) (

s

ω0
) + 1 ( 17 ) 

The factors are: 

1) Poles of AIN(s): 

ω1 =
1

1
;  ω2 =

1

2
  ( 18 ) 

2) Resonance frequency: 

 ω0 = √ω1ω2(1 − βAOL,DC)  ( 19 ) 

3) Quality factor: 
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Q =
ω0

ω1+ω2
=
√ω1ω2(1−βAOL,DC)

ω1+ω2
  ( 20 ) 

The roots of Q(s) are: 

λ12 = −ω̅ ± ω̅√1 − 4Q2;  ω̅ =
ω1+ω2

2
  ( 21 ) 

For 

 4Q2 − 1 > 0 ⇒  Q >
1

2
 ( 22 ) 

the step response is periodic or contains sine and cosine terms. 

 uout,imp (t) = h(t) [A0 + e
−ω̅t (A1 cos (√4Q2 − 1ω̅t) +A2 sin (√4Q2 − 1ω̅t))] ( 23 ) 

with A0 = 1, A1 = -1 und A2 = 1/(4Q2 – 1)0.5.  

For 

 4Q2 − 1 < 0 ⇒ Q <
1

2
 ( 24 ) 

the step response is aperiodic and exponential with real time constants: 

1,fb = -1/λ1 and 2,fb = -1/λ2: 

uout,imp (t) = h(t)[C0 + C1e
−1,fbt + C2e

−2,fbt] ( 25 ) 

with C0 = 1, C1 = - λ2/(λ2 – λ1) und C2 = λ1/(λ2 – λ1).  

The condition (24) leads to the following equation: 

Q =
√ω1ω2(1−βAOL,DC)

ω1+ω2
<
1

2
 ( 26 ) 

If we assume that the time constants in AOL(s) 1 and 2 are very different: 

1 ≫ 2;  ω1 ≪ ω2 

and if we assume that βAOL, DC is negative and has a large amount, the formula (26) simplifies 

as follows: 

Q ~ 
√ω1ω2|βAOL,DC|

ω2
<
1

2
⇒
ω1|βAOL,DC|

ω2
<
1

4
   

or: 
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2 <
1

4

1

|βAOL,DC|
 ( 27 ) 

The second time constant 2 must be smaller than the first time constant 1 divided by 4 | βADC |. 

Since | βADC | is normally >> 1 (in our example | βADC | = 20), the second time constant must 

be much smaller than the first so that the step response does not oscillate. Very different time 

constants in the open gain lead to exponential behaviour. 

If the following holds: 

2 ≪
1

4

1

|βAOL,DC|
  

It holds also Q << 1. 

(Note that Q is always greater than 0.) 

The step response is then approximately: 

uout,imp (t) ~ h(t) [1 − e
−
t

r]  ( 28 ) 

With the rise time: 

r =
1

βAOL,DC
 ( 29 ) 

We define here the bandwidth of amplifier B as 

B =
1

2r
 ( 30 ) 

The larger time constant 1 is also called the dominant time constant, since it determines the 

step response. 
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Fig 10: Step responses for different βAOL functions with Q values: 1) Q ~ 1; 2) Q ~ 0.707; 3) Q 

~ 0.5 and 4) Q ~ 0.32. βADC = 100. 

Figure 10 shows the step responses which correspond to the βAOL having the parameters from 

the following table. 

Case ω1 ω2 Q Ratio 1/2   

(βADC = 100) 

PM 
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The step response (3) for Q = 0.5 that is equivalent to 

2 =
1

4

1

|βAOL,DC|
  

differs only a little from the aperiodic step response for Q < 0.5: 

 

uout,imp (t) ~ h(t) [1 − e
−
t

r] ;  r =
1

βAOL,DC
  

Note that the step response (2) in Figure 10 for 

Q =
1

√2
= 0.707 ⇒ 2 =

1

2

1

|βAOL,DC|
  

first reaches the amplitude of 1 has no undershoot. 

It is interesting that the two-stage amplifier would have real time constants and exponential 

time behaviour with no feedback. By using feedback, the time response can become periodic, 

as if we had L and C in the circuit. That is the reason why it is possible to realize oscillators 

employing feedback. These oscillators do not need inductors. 

 

Fig 11: Position of poles of AFB(s) when the strength of the feedback β increases 
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Figure 11 shows how the roots λ1 and λ2 of the characteristic polynomial Q (s) of 

AFB(s) =
AINAOL(s)

1−βAOL(s)
 
P(s)

Q(s)
  

(poles of AFB (s)) move in a complex plane if we increase the strength of the negative feedback 

β starting from 0. Without negative feedback (β = 0) the poles of AFB (s) are equal to the poles 

of AOL (s): λ1 = ω1 and λ2 = ω2. The poles are real numbers. When the negative feedback 

increases, the poles move towards each other (Q increases) until they become equal for Q = 0.5 

λ1 = λ2 = (ω1 + ω2) / 2. For Q > 0.5, the poles become complex with a constant real part 

= (ω1 + ω2) / 2. The imaginary parts have the same magnitude and opposite signs. The step 

response contains then sine and cosine terms. 

 

Fig 12: Position of three poles of AFB(s) when the strength of the feedback β increases 

Figure 12 shows the case where AIN(s) has three poles ω1, ω2 and ω3. We can perform a similar 

analysis as above and plot in a complex plane how the poles of AFB(s) move when we increase 

the strength of the negative feedback β. The poles of AFB(s) are real for β = 0: λ1 = ω1, λ2 = ω2 

and λ3 = ω3.  The two smaller poles move towards each other and become complex. The third 

pole remains real and its magnitude increases, the corresponding time constant gets smaller. 

The only difference to the second order system is that the real part of the complex poles can 

also become positive for high β. The amplitude of the oscillation then increases until the circuit 

is no longer linear. The circuit becomes unstable. 

The conditions for a step response without oscillations are nearly equal for 2nd - and 3rd order 

systems. This means that all formulas from this lecture can also be used in the case of AIN(s) 

with three poles. 

λ1, λ2 = f(β)
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Im
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Nyquist stability criterion 

 

There is a method that tells us in the general case whether the poles of 

AFB(s) =
AIN(s)AOL(s)

1−βA(s)
  ( 31 ) 

have a negative real part, or whether the corresponding circuit with feedback is stable. The 

assumption is that all factors have a frequency dependence: 

βA(s) =
L(s)

M(s)
;  AIN(s)AOL(s) =

N(s)

O(s)
   ( 32 ) 

This method is Nyquist's stability criterion. Nyquist's stability criterion is based on the Bode 

diagram.

 

Fig 13: Bode diagram 

The Bode diagram of a transfer function βA(jω) with two time constants 

βA(jω) =
A

(jω/ω1+1)(jω/ω2+1)
  ( 33 ) 

is shown in Figure 13. The left Y-axis is |βA(jω)| in dB or 20 log(|βA(jω)|).  
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|βA(jω)| =
A

√((
ω

ω1
)
2
+1)((

ω

ω2
)
2
+1)

 ( 34 ) 

X–axis is log(ω). 

The frequencies ω1 = 0.1 MHz and ω2 = 100 MHz are the poles of βA (jω). The slope after the 

first pole is -20dB / decade and after the second pole -40dB / decade. 

The right Y axis is the phase of βA (jω): 

Phase(ω) =  − tan−1 (
ω

ω1
) − tan−1 (

ω

ω2
) ( 35 ) 

The phase changes by -90° around each pole ω (in the region from 0.1 ω to 10 ω). 

We define the zero crossing frequency ω0 as the frequency that fulfils the following condition  

|βA(jω0)| = 1 (|βA(jω0)| = 0 dB)  

A circuit with feedback is stable 1  (see slides DAS_2020_10_Nyquist_Beweis.pptx) if the 

absolute value of the phase change of the loop gain βA(iω) from ω = 0 to ω = ω0 is less than 

180 °. 

We call the difference 180 ° minus the absolute value of the phase change the phase margin 

(PM) (Figure 13). 

The condition for the validity of the Nyquist criterion is that the functions βA(s) and AIN(s) 

AOL(s) have no poles with a positive real part. 

                                                           
1 The poles of AFB (iω) have negative real parts 
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Fig 14: Bode diagrams of βA(s) functions with the parameters from the table 

Figure 14 shows Bode diagrams for the βAOL functions with parameters from the table. (It holds 

also βAOL,DC = 100.) The parameters are the same as in Figure 10. βAOL with phase reserve < 

67 ° leads to a periodic step response.  

Case ω1 ω2 Q PM 

1 0.1MHz 100ω1 1 53° 

2 0.1MHz 200ω1 0.707 67° 

3 0.1MHz 400ω1 0.5 77° 

4 0.1MHz 1000ω1 0.32 85° 
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2 =
1

4

1
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2 =
1

2

1

|βADC|
; Q = 0.707  

corresponds to a phase reserve of 67 °. 

The more the first and second time constants are separated, the greater the phase reserve. 

First implementation of the two-stage voltage amplifier 

We will start with the specifications in the table: 

Voltage amplifier  

Parameter Value 

Cload 100pF 

Rload 100Ω 

AFB 50 

AOL 1000 

βA 20 

 

We can optimize the amplifier in two ways: 

1) The current consumption (power consumption) should be minimal. 

2) The bandwidth defined by equation (30) should be as large as possible - the rise time of 

the step response should be minimal. 

We will optimize the amplifier for small power consumption. 

We use a simple operational amplifier with a current mirror as the first amplifier stage and a 

common source amplifier with an active load (without cascode) as the second stage. Our 

standard amplifiers (amplifiers in standard size) have Ibias = 50 µA, gm = 1 mS, rout = 50 kΩ. 

The voltage gain of the amplifier without a resistive load is A = gm rout = 50. If we use the 

standard amplifier as the second stage and connect it to Rload = 100 Ω, it has a voltage gain of 

only: 

A2 = gm(rout||Rload)~gmRload = 0.1  

A2 is defined here as an absolute value, the actual gain dvout / dvin is negative (= -A2). 
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The two-stage amplifier would in this case have a gain of only A = A1 A2 = 50  0.1 = 5. 

We need at least a gain A2 = 20 to achieve the specified total gain of 1000. 

In the case of the second stage, we will therefore connect as many common source amplifiers 

in parallel until the gain becomes 20: 

A2 = gm,par(rout,par||Rload) ~ 20  

We need to use around 200 standard amplifiers (Figure 15). 

In this case it holds: 

gm2 = gm,par = 200  1mS = 200mS ( 36 ) 

rout2 = rout,par = 50kΩ/200 = 250Ω ( 37 ) 

and 

A2 = g2(rout,2||Rload) ~ gm2Rload = 20  ( 38 ) 

 

Fig 15: Two-stage voltage amplifier, implementation with the standard amplifiers (amplifier 

with Ibias = 50 µA). The first amplifier stage is implemented with a standard size operational 

amplifier (OA). The second amplifier stage consists of 200 common source amplifiers (CSA) 

(each standard size) in parallel. 

Ci

Cf

Rload Cload

vin vout

C1

Standard amplifier

gm1 = 1mS

rout1 = 50kΩ

200 standard amplifiers in parallel

gm2 = 1mS

rout2 = 250Ω > Rload

R2 = ~ Rload

A1 = gm1 rout1 = 50 A2 = 20

1  Standard-OA 200  Standard-CSA
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Fig 16: Two-stage voltage amplifier - small signal model 

The implemented circuit show in Figure 15 corresponds to the generic circuit in Figure 16 if 

the values from the following table apply: 

Generic 

circuit 

Implemented 

circuit 

Value 

R1 rout1 50kΩ 

R2 Rload 100Ω 

C2 Cload 100pF 

C1 C1 TBD 

gm1 gm1 1mS 

gm2 gm2 200mS 

A1 gm1rout1 50 

A2  gm1Rload 20 

 

Let us now calculate the factors β, AIN, and AOL. 

We will implement the feedback using two capacitors Ci and Cf. We put Ci = 50 Cf. The value 

for Cf can be chosen relatively freely, we set Cf = 200 fF. (Larger Cf values result in less noise.) 

In this case, we get: 

gm1vin1 R1 C1 C2gm2vin2

vin1 vin2

voutvin

R2

Cf

Ci

First stage Second stage
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β =
Cf

Cf+Ci
= 0.02 ( 39 ) 

and 

AIN =
Ci

Cf+Ci
 ~ 1 ( 40 ) 

The open loop gain is (s. (14)): 

  

AOL(s) =
−gm1rout1gm2Rload

(1+srout1C1)(1+sRloadCload)
=

−A1A2

(1+s1 )(1+s2 )
 ( 41 ) 

This formula is equal to (14). 

AFB and the step response are described with formulas (15), (23) and (25). 

Stability 

Let us now calculate the value of capacitance C1 required to obtain an step response without 

oscillations. 

The condition for 2 for an step response without overshoot is (27): 

2 < 
1

4

1

|βAOL,DC|
  

The dominant time constant 1 is then: 

1 > 4|βAOL,DC|RloadCload = 4  20  10 ns = 800 ns ( 42 ) 

This condition can be achieved by suitable C1: 

1 = rout1C1 > 4|βAOL,DC|RloadCload  ⇒ C1 >
4  20 10 ns

50kΩ
= 16pF  ( 43 ) 

The rise time of the step response is then approximately: 

r~
1

βAOL,DC
=

C1

βgm1A2
>
4|βAOL,DC|RloadCload

βAOL,DC
= 4RloadCload = 40ns ( 44 ) 

Unfortunately r is relatively long, which makes the step response slow and reduces the 

bandwidth. 

The following table summarizes the results: 

Generic 

circuit 

Implemented 

circuit 

Value 

R1 rout1 50kΩ 
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R2 Rload 100Ω 

C2 Cload 100pF 

C1 C1 16pF 

gm1 gm1 1mS 

gm2 gm2 200mS 

A1 gm1rout1 50 

A2  gm1Rload 20 

1  rout1 C1 4βA2  

2  Rload Cload 10ns 

βA βA1A2 20 

 

Conclusion: The two-stage amplifier meets the specification for open loop gain and has about 

50 less power consumption than the single-stage amplifier. The minimum rise time of the step 

response is about 40 worse than the rise time in the case of the single-stage amplifier. Figure 

17 shows the comparison. 
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Fig 17: Comparison between voltage amplifiers with two stages (top) and with one stage 

(bottom). Disadvantages are marked in red - e.g. in the case of single-stage amplifier, high 

power consumption or high input capacitance. OA - operational amplifier, CSA - common 

source amplifier, FCA - folded cascode amplifier. 

  

31

Ci=10pF

Rload Cload

vin vout

C1=16pF

Parameter Value

Cload 100pF

Rload 100Ω

AFB 50

AOL 1000

βA 20

r 4CloadRload = 40ns

Ibias (201 I0) 10.1mA

vin vout

Ci=100pF

Cf=2pF

Parameter Value

Cload 100pF

Rload 100Ω

AFB <50

AOL 500

βA 10

r 2AFBCload/gm=1ns

Ibias (10000 I0) 500mA

Rload Cload

Cf = 200fF

gm1 = 1mS

rout1 = 50kΩ

A1 = gm1 rout1 = 50

gm2 = 200mS

rout > Rload

A2 ~ gm Rload = 20

gm,par = 10S

Rout,par = 100Ω

Ibias,par = 500mA

Cgs,par = 100pF

1  Standard-OA 200  Standard-CSA

10000  Standard-FCA 
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Lecture 11 

Implementation 2 (frequency compensation) 

We have seen that a two-stage amplifier can achieve high gain with low power consumption. 

The simple variant of Figure 15 has a relatively small bandwidth (30) when the feedback was 

used. 

We can achieve an improvement by connecting the capacitance C1 between the input and the 

output of the second stage (Figure 18). This technique is called frequency compensation. The 

DC gain of the second stage must be negative. The capacitance between the input and the output 

of the second stage separates the time constants (pole splitting) and thus reduces the oscillations 

and improves the bandwidth. We will discuss it in this chapter. 

 

Fig 18: Two-stage amplifier with frequency compensation 

We start with the dimensions of the amplifier stages as in the first example: 

Generic circuit Implemented circuit Value 

R1 rout1 50kΩ 

R2 Rload 100Ω 

C2 Cload 100pF 

C1 C1 TBD 

gm1 gm1 1mS 

gm2 gm2 200mS 

Ci = 10pF

Cf = 200fF

Rload Cload

vin vout

C1

200  Standard-CSA1  Standard-OA
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A1 gm1rout1 50 

A2  gm1Rload 20 

  

Let us calculate the factors β, AIN, and AOL. 

We set Ci = 10 pF and Cf = 200 fF again. It follows: 

β =
Cf

Cf+Ci
=  0.02 ( 45 ) 

and 

AIN =
Ci

Cf+Ci
 ~ 1 ( 46 ) 

Let us now calculate AOL. The test circuit is shown in Figure 19. 

 

Fig 19: Test circuit for calculating of the open loop gain AOL 

gm1vin1 R1 = rout1

C1

gm2vin2

vin1 vin2

vout

R2 = Rload
C2 = Cload

Cf

Ci

voutvtest

AOL = vout/vtest

C1

vtest

Cf

Ci

Cload Rload
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If we assume that the serial capacitance Cf Ci / (Cf + Ci) ~ Cf is much smaller than Cload and if 

we replace the current source gm1 vin1 with an equivalent voltage source, we obtain a simplified 

circuit in Figure 20. 

 

Fig 20: Simplified test circuit for calculating of the open loop gain AOL 

  

gm1 rout1 vtest

R1 = rout1

C1

gm2vin2

vin2

vout

R2 = Rload C2 = Cload

C1

R1 vout

R2C2

-A2

A1 vtest
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The amplification AOL has its own feedback that is created by C1 and R1. 

We can employ the Mason's formula for AOL: 

  

AOL(s) =
AIN,AOLAOL,AOL

1+βAOLAOL,OL
 ( 47 ) 

 

Fig 21: Test circuits for calculating AOL, AOL (top), AIN, AOL (middle) and βAOL (bottom). 

The test circuits for the calculation of factors AOL, AOL (top), AIN, AOL (middle) and βAOL (bottom) 

are shown in Figure 21. 

The open loop gain AOL, AIN is: 

  

AOL,AOL(s) = −
gm2Rload

sRloadCload+1
−

A2

sT2+1
 ( 48 ) 

The input gain AIN,AOL is: 

  

AIN,AOL(s) =
gm1rout1

srout1C1+1
  

A1

sT1+1
 ( 49 ) 

The time constants T1 and T2 are defined as follows: 

R1
vout

R2C2

-A2

vtest

AOL,AOL = vout/vtest

R1

R2C2

-A2
A1 vtest

AIN,AOL = vi*/vtest

vi*

vtest

R1

R2C2

-A2

βAOL = vi*/vtest

vi*

C1

C1

C1

gm2vin

vin

rout2
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T1 = rout1C1;  T2 = RloadCload  

The feedback is: 

  

βAOL(s) = −
srout1C1

srout1C1+1
=

sT1

sT1+1
 ( 50 ) 

If we insert the factors (48) - (50) in the Mason's formula, we get: 

AOL = −

A1
1+sT1

A2
1+sT2

1+
A2

1+sT2

sT1
1+sT1

  ( 51 ) 

We can rewrite the formula (51) as follows: 

AOL = −
A1A2

1+sT2+sT1+sA2T1+s2T1T2
  

Let us sort the factors in the denominator according to their size and try to simplify the 

expression. The term sA2T1 is much larger than sT1. Therefore sT1 can be neglected. We assume 

that sA2T1 is much larger than sT2. The factor s2 T1 T2 cannot be omitted because it dominates 

for high frequencies. 

AOL is simplified as follows: 

AOL = −
A1A2

1+sA2T1+s2T1T2
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We can add a small term sT2 / A2 to the polynomial in denominator - that changes little and 

allows us to factorize the polynomial. We get: 

AOL = −
A1A2

(1+s
T2
A2
)(1+sA2T1)

= −
A1A2

(1+sτ2,B)(1+sτ1,B)
 ( 52 ) 

Let us compare AOL in the case when C1 is connected to ground (case A, without frequency 

compensation - Figure 22 top) and when C2 is connected between the input and the output of 

the second stage (case B, frequency compensation - Figure 22 bottom). 

 

Fig 22: Gain AOL = vout / vtest without / with frequency compensation 

The frequency compensation separates the poles (pole splitting). 

The time constants of AOL (s) without frequency compensation are (41): 

1 = T1; 2 = T2 

The time constants of AOL (s) with frequency compensation are (52): 

1,B = A2 T1; 2,B = T2 / A2. 

One explanation for longer time constants 1, B is the Miller effect. We will explain this effect 

in the next paragraph. 

In the previous analysis we have neglected the input capacitance of the second stage - the gate-

source capacitance of transistor Tin2. This neglect is only justified if: 

C1 ≫ Cgs (52b) 

C1

R1

20log(|AOL|)

log(ω)

vout

R2C2

C1

R1

20log(|AOL|)

log(ω)

vout

R2C2

A1vtest

-A2

-A2

A1vtest

ω1 =
1

 1 1

ω2 =
1

 2 2

ω1, =
ω1
 2

ω2, =  2ω2

Ohne Frequenzkompensation

Mit Frequenzkompensation

With frequency compensation

Without frequency compensation
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Stability 

Let us now calculate the parameters of the circuit C1, gm1 and gm2 in order to obtain the rise time 

of 2 ns (comparable to the single-stage amplifier) and an step response without oscillations. 

r,B = 2 ns (52c) 

The condition for an step response without overshoot is (27): 

2,B <
1

4

1,B

|βAOL,DC|
  

It follows: 

1,B >
4|βAOL,DC|RloadCload

A2
= 4βA1RloadCload ( 53 ) 

This condition can be achieved by dimensioning C1 as follows: 

1,B = A2rout1C1 > 4βA1RloadCload⇒ C1 >
4βgm1

gm2
Cload  ( 54 ) 

The rise time of step response is: 

r,B ~ 
1,B

βAOL,DC
=

A2rout1C1

βgm1rout1A2
=

C1

βgm1
>
4βgm1Cload

βgm1gm2
=
4Cload

gm2
 ( 55 ) 

From the right-hand side of (55) we obtain the necessary transconductance gm2 to achieve the 

minimum time constant of 2 ns: 

4Cload

gm2
= 2ns ⇒ gm2 = 4

100pF

2ns
= 200mS  

This is the same as our initial value. 

Let us now calculate the gate-source capacitance of Tin2. To achieve the transconductance of 

200 mS we need 200 standard amplifiers in parallel. We assume that a standard amplifier for 

the second stage has the capacitance Cgs of about 10 fF. The total gate-source capacitance of 

Tin2 (consists of 200 standard transistors in parallel) is then: 

Cgs2 =  200  Cgs,standard = 200  10 fF = 2 pF  

In order for our formulas to be correct, condition (52b) must be fulfilled: 

C1 ≫ Cgs = 2 pF 

We set C1 = 4 pF. 

From the left side of (55) we get the transconductance gm1 required to actually achieve the time 

constant of 2 ns and at the same time an step response without oscillations. 
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C1

βgm1
= 2ns ⇒ gm1 =

4 pF

0.02  2 ns
= 100 mS  

Since a standard amplifier has the transconductance of 1 mS, we have to take 100 amplifiers in 

parallel for the first stage.  

The following table summarizes the results: 

Generic 

circuit 

Implemented 

circuit 

Value 

R1 rout1 50kΩ/100 

R2 Rload 100Ω 

C2 Cload 100pF 

C1 C1 4pF 

gm1 gm1 1mS100 

gm2 gm2 200mS 

A1 gm1rout1 50 

A2  gm1Rload -20 

βA βA1A2 20 
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Fig 23: Inverting voltage amplifier with two amplifying stages - complete circuit diagram 

  

Figure 23 shows the complete circuit. The DC voltage source Vref can be implemented as a 

voltage divider (connected to GND and VDD). 

Conclusion: The two-stage amplifier meets the specifications for open loop amplification and 

has about 33 less power consumption than the single-stage amplifier. The rise time is 2 larger 

than that of the single-stage amplifier. 

Ci=10pF

Rload Cload

vin vout

C1=4pF

Cf=200fF

vin

vout

Cf=200fF

C1=4pF
Ci=10pF

200  Standard-CSA100  Standard-OA

Vref
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Fig 24: Comparison between voltage amplifiers with two stages and frequency compensation 

(top) and with one stage (bottom). Disadvantages are marked in red. OA - operational amplifier, 

CSA - common source amplifier, FCA - folded cascode amplifier. 

 

Miller effect 

If the capacitor C is connected between the input and the output of a voltage amplifier with 

negative gain (-A), its capacitance is increased by ~ A (Figure 25).  

A resistor R connected to this circuit creates the time constant 

1  = R  A  C. 

42

Ci=10pF

Rload Cload

vin vout

gm1 = 100mS

rout1 = 50kΩ/100

A1 = gm1 rout1 = 50

C1=4pF

gm2 = 200mS

rout > Rload

A2 ~ gm Rload = 20

Parameter Wert

Cload 100pF

Rload 100Ω

AFB 50

AOL 1000

βA 20

r 4Cload/gm2 = 2ns

Ibias (300 I0) 30mA

vin vout

gm,par = 10S

Rout,par = 100Ω

Ibias,par = 500mA

Cgs,par = 100pF

Ci=100pF

Cf=2pF

Parameter Wert

Cload 100pF

Rload 100Ω

AFB <50

AOL 500

βA 10

r 2AFBCload/gm=1ns

Ibias (10000 I0) 500mA

Rload Cload

Cf=200fF

100  Standard-OA 200  Standard-CSA

10000  Standard-FCA 
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Fig 25: Comparison between time constants. Left: R sees capacitance C. Right: R sees larger 

capacitance.  

 

Fig 26: Miller effect, increase of C   

Figure 26 shows why the capacitance is increasing. 

A "C-Meter" measures the capacitance by generating a current Itest and by measuring how much 

the voltage on the capacitor (ΔU) has risen after time ΔT - Figure 26 (left). The capacitance can 

be determined with the following formula: 

Itest = C
ΔU

ΔT
 ⇒  C = Itest

ΔT

ΔU
  

Smaller voltage change means greater capacitance. 

Let us now assume that exactly the same current flows into the capacitor with amplifier - Figure 

26 (right). 

The voltage between the capacitor electrodes after the time ΔT is the same as when we have a 

capacitor without amplifier: 

ΔU =  
Itest

C
 ΔT  

The voltage at the input of the amplifier changes by approximately: 

ΔUin =
ΔU

A+1
≪ ΔU  

The voltage at the output changes by: 

C

-A

C

R R

v t = 1 − e−t/1; 1 = RC

h t

v t = 1 − e−t/1;         

h t

C
(1+A)C

C

-A

C

CC

ΔUin

ΔUout

Itest ItestΔU
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ΔUout = −ΔU
A

A+1
 ~ ΔU  

The difference ΔUin - ΔUout is U. 

Since the C-meter measures a voltage change that is A + 1 smaller than ΔU, it interprets as a 

capacitance that is A + 1 larger than C. 

If we connect a resistor to the input of the amplifier with C, the amplifier behaves as a large 

capacitor with the capacitance (A + 1) C. The time constant is correspondingly large. Such an 

increase of the capacitance is called the Miller effect. 

 

Let us look again at the circuit of Figure 20 and try to understand its behaviour. 

The transfer function was (52) 

AOL = −
A

(1 + s
T2
A2
) (1 + sA2T1)

= −
A

(1 + sτ2,B)(1 + sτ1,B)
 

with 

T1 = R1 C1; T2 = R2 C2; A2 = gm2R2 

The derivation of this transfer function was relatively long. Since we introduced the Miller 

effect, we can better understand the time constants. The circuit of Figure 20 can have been 

drawn in a simplified manner as in Figure 27. 
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Fig 27: Integrator 

The first time constant 1,B, B arises because R1 is connected to the capacitors. As described 

above, the capacitance C1 is increased by a factor of 1 + A2 ~ A2. Resistor R1 sees capacitance 

A2 C1. The time constant is 1,B, B is: 

1,B = R1C1A2 

The explanation for shorter time constant 2,B is the feedback. Without feedback, the time 

constant would be T2 = R2C2. We have seen in previous lectures that negative feedback 

influences the output resistance (or output impedance) (Blackman's formula) by reducing the 

impedance by 1 - βA (iω). If βA (iω) is a real number βA (iω)  βA, the time constant caused 

by the output resistance is also by 1 - βA smaller. In our example this means: 

2,B =
T2

1−βA
  

It holds 2,B < T1. For ω > 1/T1 the loop gain is real number:  

βA(iω)  βA = -A2 

R1 can be neglected in the serials connection of R1 and C1. 

Therefore:  

2,B =
T2

−βA
=
T2

A2
  

Cin

R1 voutvin

gm2vin R2 C2

C1

vin,a

−A2
1 + R2C2s

vin,a
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If we have an input capacitance Cin (this capacitance would be e.g. the gate-source capacitance 

of the input transistor), the time constants change as follows: 

Resistor R1 now sees the increased capacitance A2C1 and Cin in parallel. Therefore the first time 

constant is: 

1,B ~ R1(A2C1 + Cin) =  A2T1 (1 +
Cin
C1A2

) 

The capacitance Cin leads to a change in βA(s). It holde for ω > 1/T1: 

βA(s)  βA~ − A2
C1

C1 + Cin
 

The second time constant is then: 

2,B ~
T2
−βA

=
T2
A2
(1 +

Cin
C1
) 

We see that the input capacitance has a relatively strong influence on the second time constant. 

 

The circuit consisting of a voltage amplifier and capacitive feedback (Figure 27) is important. 

It is a slow voltage amplifier, with a large DC gain (-A2) and a long time constant A2R1C1. For 

the time intervals that are significantly shorter than the time constant 1, the circuit behaves like 

an integrator. 

The following applies: 

uout(s) =
A2

(sA2R1C1+1)(s
T2
A2
+1)
uin(s)

A2 = ꝏ
→    uout(s) =

uin(s)

sR1C1
 ( 56 ) 

Or in time domain: 

uout(t) =
1

RC
∫uin(t)dt ( 57 ) 

 is the time constant of the amplifier. In the case of the second amplifier stage: 

  

uout(t) =
1

R1C1
∫uin(t)dt ( 58 ) 
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Linear regulator 

Figure 28 shows the linear regulator implemented as a two-stage amplifier with frequency 

compensation. 

 

Fig 28: Linear regulator with a two-stage amplifier and frequency compensation 

The first stage (an operational amplifier with a current mirror) has the same dimensions as in 

the voltage amplifier: 

gm1 = 1 mS 

rout1 = 50 kΩ 

A1 = gm1 rout1 = 50 

The second stage is based on the common source amplifier with an open loop gain of 50. 

The overal gain is then:  

A = A1 A2 = 2500. 

CloadIload

Vref

gm1 = 1mS

rout1 = 50kΩ

A1 = gm1 rout1 = 50

Rf1

Rf1

LDO regulator

Parameter Wert

Cload 10nF

Iload 0-100mA

rout 0.1Ω

AOL 1000

Vref 1V

C1

in

in

out
inp

inn

inp

inn

out

Vout
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In order to simplify the analysis et us choose the following values: 

Rf1 = 0 and Rf2 = ꝏ.  ( 59 ) 

We will determine the transconductance gm2 in order to achieve an output resistance with 

feedback of 0.1 Ω: 

rout = 0.1 Ω.  ( 60 ) 

First, let us calculate the DC voltage Vout using Mason's formula. Figure 29 shows the test 

circuits for calculating AIN, β and AOL. 

 

Fig 29: Linear regulator - test circuits for AIN, β and AOL 

AIN = V/Vtest = 1 

β   V/Vtest = -1 

AOL = V/Vtest = A1A2

Vtest V

Vtest

V

Vtest

V
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The following applies: 

AIN = 1 (Figure 29, top), 

β = -1 (Figure 29, middle), 

AOL = A1A2 (Figure 29, bottom) 

If we insert these terms into Mason's formula, we obtain: 

Vout =
A1A2

1+A1A2
Vin ~ Vin ( 61 ) 

Let us calculate the output resistance (small signal resistance). We use Blackman's formula. 

 

Fig 30: Linear regulator - test circuits for rout0, βASC and βAOC 

rout0 = Vtest/Itest = rout2

βA C = V/V     = −A1A2Vtest

V

Vtest

V

βASC = V/Vtest = 0

Vtest

Itest
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rout = rout0
1−βASC

1−βAOC
 ( 62 ) 

Figure 30 shows the test circuits for calculation of rout0, βASC and βAOC. 

The factors have the following values: 

rout0 = rout2;  βASC = 0;  βAOC = −A1A2   ( 63 ) 

If we insert these terms into Blackman's formula (61) we get: 

rout =
rout2

A1A2
=

1

A1gm2
 ( 64 ) 

If we assume A1 = 50, we can calculate the required transconductance gm2, which leads to 

rout = 0.1 Ω. 

0.1Ω =
1

50gm2
⇒ gm2 = 200mS ( 65 ) 

We must connect 200 standard amplifiers (each gm = 1mS) in parallel. 

Remember that the second amplifier stage has rout = 250Ω. 

The feedback enables us to achieve a significantly lower output resistance. 

Stability 

Let us dimension C1 so that there are no oscillations. From the formula (54) we calculate: 

C1 >
4βgm1

gm2
Cload = 4

1mS

200mS
10nF = 200pF  ( 66 ) 

The rise time of step response can be calculated using (55): 

r =
C1

βgm1
>
4Cload

gm2
=
4  10nF

200mS
= 200ns  ( 67 ) 

The time constant r tells us among others how quickly the regulator can regulate the output 

voltage if Iload changes.  

We can achieve a faster rise time by increasing gm2 and gm1. 

Input capacitance 

It can be also calculated using Blackman's formula that the input source sees a very small 

capacitive load: 

Cin =
Cgs,par

1+A1A2
 ( 68 ) 

Cgs,ser is the series capacitance of the Cgs capacitances of two input transistors in the operational 

amplifier. This result holds for frequencies smaller than 1/r. 
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How can we explain that the input capacitance is smaller than Cgs,ser? The feedback regulates 

Vref = Vout so that the charge stored in Cgs,ser does not change. Because of this, the input source 

does not see the effect of Cgs,ser (Figure 31).  

 

Fig 31: Input capacitance 

 

Fig 32: Linear regulator - complete circuit diagram 

Figure 32 shows the complete circuit diagram of the linear regulator. 
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LDO regulator

Parameter Value

Cload 10nF

Iload 0-100mA

rout 0.1Ω

AOL 1000

Vref 1V

gm1 1mS

gm2 200mS

C1 200pF

r 200ns

Vout

Vout
Vref

C1

CloadIload

CloadIload

Ibias2 = 10mA

Tin2

Tin1,1 Tin1,2

out1
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DC analysis 

So far we have limited ourselves to the small signal analysis and have not taken into account 

that the load current can influence the operating point of the second amplifier stage. 

Note that the current Iload also flows through the transistor Tin2. The transconductance of the 

transistor Tin2 (gm2) is proportional to Iload, for Iload > 10 mA. 

This has a positive effect on the circuit. A2 gets larger and rout gets smaller. 

Transistor Tin2 must be dimensioned in such a way (W / L must be large enough) that for 

Iload = Iload, max its | Vgs | does not get too large. Otherwise it could happen that Tin1,2 no longer 

works in saturation and that A1 becomes small. 

 

 

 

 

  

 

 

 

 

 

 


